
Accessing ROOT from the JVM (Java/Scala)

Jim Pivarski

2016-02-08

1 / 9

Motivation

Most of the big data-pipeline frameworks used in industry run on
the Java Virtual Machine (JVM); most physics data is in ROOT.

In particular, Apache Spark is written in Scala.

I Scala is a JVM language (essentially interchangeable with
Java, but more friendly for data analysis; has a REPL).

I Spark supports analyses in Scala, Java, Python through
sockets (Py4J), and R through pipes (stdin/stdout).

I No support for C/C++ or other native code.

I Sockets and pipes both introduce serialization and
transmission overhead.

Similar motivation as for PyROOT: like Python, the JVM is a
platform that is increasingly being used for data analysis.

We need an efficient and robust bridge.

2 / 9

Technologies

FreeHEP-ROOTIO
Pure-Java reimplementation of ROOT I/O on java.freehep.org.

I Hard to find (docs point to a JAR compiled in 2001).

I But it lives! svn://svn.freehep.org/svn/freehep/trunk has
recent commits: 2014 (src/main) and 2015 (pom.xml).

I Reads and writes ROOT files with Java reflection to
dynamically create runtime objects.

I FreeHEP-ROOTIO compiles with unit tests removed (they
require access to an internal GLAST server).

I It’s not on Maven Central (“freehep-io” is unrelated).

I Starting to test it in the Scala REPL: this is promising.

3 / 9

java.freehep.org
http://java.freehep.org/freehep-rootio/
svn://svn.freehep.org/svn/freehep/trunk

Technologies

Java Native Interface (JNI)

For compiling C/C++ code that can be used in Java programs.

I Java community is strongly biased against it.
(Unlike the equivalent in Python, which is frequently used.)

I C/C++ memory has fixed locations; Java has a generational
garbage collector. (Python has fixed memory, like C/C++.)

I Java classes have no destructors other than finalize(),
which is not guaranteed to be called (like Python del).

I try-finally is recommended to avoid memory leaks.

I Attempted, not promising: mysterious segmentation faults.

Java Native Access (JNA)

Links Java code to pre-built shared libraries (.so files).

I Same issues as above except the interface is cleaner.

I Implicit data transformation overhead: “100 µs per call?”

I Promising: no myserious segmentation faults.

4 / 9

ScaROOT

I Tested JNI (unsuccessfully) and JNA (successfully).
I Can open ROOT file and print ->ls() from Scala.

I Set up a clean build environment with Maven and Make:
I mvn install command runs make to build C++ first, then

Scala (mixed with any Java, if needed).
I C-style symbol names (extern "C") in scaroot.so.
I scaroot.so enclosed within scaroot.jar.
I User submits only scaroot.jar to the Spark cluster, but
LD LIBRARY PATH must be pointing to ROOT on the cluster.

I Perhaps I can encapsulate a whole version of ROOT in the
scaroot.jar, so the whole thing gets sent with the
workflow. Needs testing.

I Namespace: org.dianahep, GroupID: org.diana-hep.
5 / 9

src/main/cpp/scaroot.cpp

#include <stdint.h>
#include "TFile.h"

extern "C" {
int64_t new_TFile(char *fileName);
void delete_TFile(int64_t pointer);
void TFile_ls(int64_t pointer);

}

int64_t new_TFile(char *fileName) {
TFile *tfile = new TFile(fileName);
return (int64_t)tfile;

}

void delete_TFile(int64_t pointer) {
TFile *tfile = (TFile*)pointer;
delete tfile;

}

void TFile_ls(int64_t pointer) {
TFile *tfile = (TFile*)pointer;
tfile->ls();

}

6 / 9

src/main/scala/org/dianahep/scaroot/Main.scala

package org.dianahep

import com.sun.jna._

package scaroot {
object ROOTLibrary extends Library {
Native.register("/resources/native/scaroot.so") // in JAR
@native def new_TFile(fileName: String): Long
@native def delete_TFile(pointer: Long): Unit
@native def TFile_ls(pointer: Long): Unit

}

object Main {
def main(args: Array[String]) {

val pointer = ROOTLibrary.new_TFile("Event.root")
println(s"pointer value $pointer")
ROOTLibrary.TFile_ls(pointer)
println(s"see a listing?")
ROOTLibrary.delete_TFile(pointer)
println(s"still here?")

}
}

}

7 / 9

src/main/cpp/Makefile

all: scaroot.cpp
g++ -fPIC -shared -Wl,--no-as-needed \

$(shell root-config --cflags --ldflags --libs) \
-o ../../../src/main/resources/native/scaroot.so \
scaroot.cpp

pom.xml fragment
...
<plugin>

<groupId>org.codehaus.mojo</groupId>
<artifactId>exec-maven-plugin</artifactId>
<executions>
<execution>

<phase>generate-sources</phase>
<goals><goal>exec</goal></goals>
<configuration>
<workingDirectory>src/main/cpp</workingDirectory>
<executable>make</executable>

</configuration>
...

8 / 9

Directory structure
pom.xml
README.md
src

main
cpp

Makefile
scaroot.cpp

resources
native

scala
org

dianahep
scaroot

Main.scala
test

scala
test.scala

9 / 9

