Progress Update on PowerPC LE and BE, and CMSSW with Intel C++ Compiler

David Abdurachmanov (FNAL) 2016-02-08

GCC 5.3.0 Migration

- Scheduled (?) for CMSSW_8_0_0
- Merge point of ppc64le and latest changes for aarch64 into CMSDIST under a single branch, IBI CMSSW_8_0_X/gcc530:
 - This brings:

```
slc6_amd64_gcc530, slc7_amd64_gcc530, slc7_amd64_gcc530, slc7_apc64le_gcc530
```

PowerPC LE

CMSSW IBs, QA, Releases

Princeton

```
Architecture:
                        ppc64le
                        Little Endian
Byte Order:
CPU(s):
                        160
On-line CPU(s) list:
                        0-159
Thread(s) per core:
                        8
Core(s) per socket:
                        10
                        2
Socket(s):
NUMA node(s):
                        IBM,8247-22L
Model:
L1d cache:
                        64K
L1i cache:
                        32K
L2 cache:
                        512K
L3 cache:
                        8192K
NUMA node  CPU(s):
                        0-39
NUMA node1 CPU(s):
                        40-79
NUMA node2 CPU(s):
                        80-119
NUMA node3 CPU(s):
                        120-159
Distribution:
                        Fedora 22
```

CERN

```
pc64le
Little Endian
32
0 - 31
8
TYAN, Palmetto
64K
32K
512K
8192K
0 - 31
```

Fedora 22 now!

Issues Found

- T2_CH_CERN siteconf from CVMFS is "broken" as internally it points to AFS
- CVMFS server depends on not upstreamed "aufs" (Another Union File System) module
 - CVMFS will use OverlayFS in the future, but it is only sane/stable in latest versions of kernel
- Running CMSSW validation requires re-mounting CVMFS volumes (TTL 15-60 minutes + 60 s. kernel cache drain)
- Complicated installation into <u>cms-ib.cern.ch</u> CVMFS repo

How to install release?

- Solution: static proot (5.1.0) + static qemu-ppc64le (2.5.0) + fedora-22-ppc64le-rootfs and all prepared for SLC6:
 - ./proot -R \$PWD/fedora-22-ppc64le-rootfs -b /cvmfs:/cvmfs -b / build:/build -q "\$PWD/qemu-ppc64le -cpu POWER8"
- Requires no root permissions (ptrace based)
- It's like a Linux container, but runs ppc64le binaries
- Use this environment to get releases installed via x86_64 machine

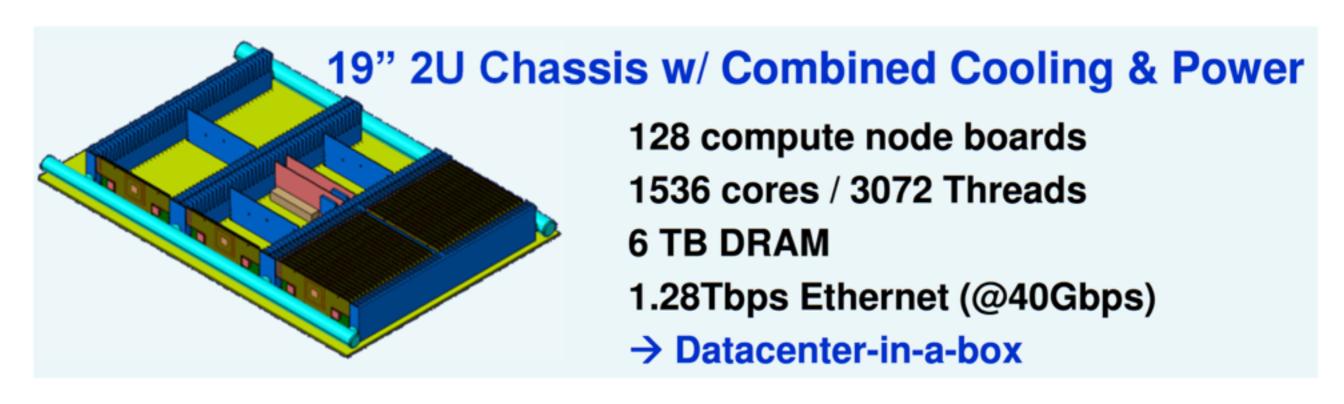
Quick Performance

Intel Xeon

PowerPC LE

Architecture:	ppc64le	x86_64	
Byte Order:	Little Endian	Little Endian	
CPU(s):	160	72	
On-line CPU(s) list:	0-159	0-71	
Thread(s) per core:	8	2	
Core(s) per socket:	10	18	
Socket(s):	2	2	
<pre>NUMA node(s):</pre>	4	4	
Model:	8247-22L @ 3.425GHz	Xeon E5-2699 v3 @ 2.30GHz	
L1d cache:	64K	32K	
L1i cache:	32K	32K	
L2 cache:	512K	256K	
L3 cache:	8192K	23040K	
NUMA node0 CPU(s):	0-39	0-8,36-44	
NUMA node1 CPU(s):	40-79	9-17,45-53	
NUMA node2 CPU(s):	80-119	18-26,54-62	
NUMA node3 CPU(s):	120-159	27-35,63-71	
Memory	256GB CDIMM (DDR3?)	64GB DDR4	
Distribution:	Fedora 22	SLC 6.7	

	IBM PowerPC	Intel Xeon	
# Physical core comparison (8 vs 2 threads)			
Single thread (performance) Multi threaded (performance)	0.156907 ev/s 0.155383 ev/s	0.200261 ev/s 0.198463 ev/s	
Single thread (peak RSS) Multi threaded (peak RSS)	15'190.5 MB 3'145.62 MB	3'341.89 MB 1'859.4 MB	
# Full machine comparison (160 vs 72 threads)			
Multi threaded (performance)	2.78965 ev/s	3.65784 ev/s	
Multi threaded (peak RSS)	97'844 MB	38 824.2 MB	


Intel Xeon (Haswell) machine provided **1.31x** more **ev/s**. Single threaded job was consuming approx. **228MB** more of RSS on IBM PowerPC. Note, that PowerPC use **64K** pages instead of **4K**.

Benchmark was 25202.0 13TeV 25ns PU, step3 (RECO) without DQM and VALIDATION. Numbers from Framework Job Reports.

PowerPC BE

- First attempt to compile CMSSW on POWER7 BE was done
- ROOT and CMSSW ROOT based utilities segfaulted
 - Caused by a broken LLVM inside ROOT 6.06, reverting weak symbol support restored "sanity" and tools started compiling/executing
- Wrong class versions and checksums are reported due to endianness bugs in pyroot
 - It required rewiring pyroot internal type selection mechanism; patch WIP

Planned System: 2U rack unit

- Expected 2U unit total power: ~ 6kW
- Integrated mains power converter to 12V distribution: 12V / 500A
- Each compute node has own 12V / 40W converter
- Common Power Converter boards for all other supplies
- High radix 10GbE / 40GbE switch boards (under construction)
- Connects to Mains, Rack level Water, 32x 40Gbps Ethernet
- Hot-water cooled for efficiency and density

Intel C++ Compiler

- CMS provides fully-compiling CMSSW_8_0_ICC_X IBs for some time already
 - Note, there are visible issues between ifort and gfortran (ABIs different)
- Recently we couldn't move forward to use new ICC releases due to breakage in compiler
 - On agreement Intel started to provide night ICC builds (incremental) for testing with CMSSW & {GCC 4.9.3, 5.3.0}
 - The exercise discovered another 3 bugs in ICC, thus we agreed it continue doing it and maybe even expand scope (ROOT, GEANT4)