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Motivation

Characterization of superconducting samples

• Study „new“ superconductors
• Thin films
• Multilayer films
• ( enhanced Nb )

• What does an ideal tool look like? 
(without going through the hassle of building an entire cavity)

• Small and flat samples, easy to change
• Measure RF surface resistance
• Wide parameter space quickly available

• 𝜔, 𝐵𝑅𝐹 , 𝑇

• High resolution: 𝑄0 ≈ 3 ⋅ 10
11↔ 𝑅S ≈ 1 nΩ

• Further sc properties

• RF penetration depth, 𝐵𝑐, RRR, m.f.p., thermal conductivity

• Milestone 78 delivered in 10/2015
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The Quadrupole Resonator (QPR)

• System based on CERN design
EPAC ´98, Rev. Sci. Instrum. 74, 3390-3393 
(2003)

• Optimized RF parameters

• Cavity and 4 hollow rods
made of Nb RRR 300

• 433 MHz or harmonics excited
with loop antenna
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The Quadrupole Resonator (QPR)

• Pole shoes focus magnetic field
on sample
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The Quadrupole Resonator (QPR)

• Sample thermally decoupled
from cavity and LHe bath

• LHe bath at constant temperature

• Quadrupole modes at
420, 850, 1300 MHz

• BSample, max = 125 mT
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Surface resistance measurement

RF-DC compensation technique

• High precision: calorimetric measurement
• Resolution: sub-nΩ

• Wide temperature range: 1.8 K up to 𝑇 > 𝑇𝑐, 𝑁𝑏
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[S. Aull, „High Resolution Surface Resistance Studies“, SRF 2013]

𝑃RF =
1

2
 𝑠𝑎𝑚𝑝𝑙𝑒𝑅𝑆 𝐻

2
𝑑𝑆

𝑃RF = 𝑅S
𝜔𝑈

𝐺

𝑃RF = 𝑃DC,1 − 𝑃DC,2

⇒ 𝑅S =
𝐺

𝜔𝑈
𝑃DC,1 − 𝑃DC,2

⇒ 𝑅S = 𝑐 𝜔 ⋅
𝑃DC,1−𝑃DC,2

𝑃RF pickup



Cryostat and insert with QPR
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Niobium samples
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Nb: Large Grain RRR 300

BCP

+ High Temperature bake  

+ 120°C bake

Nb: Polychristalline RRR 300

BCP

+ High Temperature bake



Commissioning results
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Results

Fine Grain
BCP + HT

Large Grain
BCP + HT +120°C

Energy gap 1.8 kBTC 2.1 kBTC

Electron m.f.p 68 nm 15 nm

Residual Res. 3.1 nΩ 7.6 nΩ



Status of the apparatus
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• Systematic errors still unresolved

• Parallelity of gap critical

• Concentricity of rods and sample inportant



Microphonics
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Microphonics is an issue

• Ponderomotive excitations observed

• Oscillation of the rods has resonance
at 100 Hz (double mains frequency)

• Mode is always excited and needs
to be compensated by PLL

• Complications, esp in pulsed OP

Countermeasures

• done: increased bandwidth of input antenna

• better: passive damping or piezo tuning

measured with geophones
at warm resonator

PLL feedback signal



Alternative calorimetry chamber I

Motivation
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Matching
surfaces

Helicoil

Double sided
CF100 flange

Indium wire

Ohmic heater

Cernox sensors

Risks

• Volumes of resonator and calorimetry
chamber are connected
• Cleanliness
• Indium wire gaskets create

additional risk: low quench field

• Thermal contact ?

• Impact on RF ?

• Short sample holder for coating
h = 12 mm

• Easier to handle

• No welding required

• Height adjustment possible
→ sensitivity on distance

between rods and sample

Sample 
surface



Alternative calorimetry chamber I
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• milled from large-grain bulk

• Nb RRR 300

• 150 µm chemical etch (BCP)

• Surface roughness
• max: 10 µm peak-to-peak
• typ: 2 µm

• baked at 850°C / 240 min

• 150 µm BCP



Surface resistance measurement

• First sample: with indium gasket

• (Too) high surface resistance

• Influence of indium at upper gasket visible

• Decrease of Rs at transition to nc Indium
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• Second sample: no indium

• 850 °C bake before BCP

• Indium peak gone

• Rs still too high

Indium (type I):
𝑇𝑐 = 3.4 K
𝐵𝑐 = 28.5 mT



Possible causes ruled out

• Multipacting
 possible electron paths too short

• Paschen discharge
 pressure times distance value too low

• Resistivity change at superconducting transition of Indium
 does not explain increased surface resistance after sc transition

• Discontinuous thermal conductivity of Indium at Tc (Indium)
 does not explain increased surface resistance after sc transition

• B-Field enhancement at interface sample/cylinder
 maximum conceivable enhanced field too low

• Local quench
 should exhibit different temperature dependence of Rs

• Q-disease
 sample baked after BCP

• Mechanical stress in sample (new manufacturer REUTER from a Heraeus ingot)
 should have been relaxed upon 850°C bake

• Anisotropy of RF currents in gap
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Simulations of the coaxial gap
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magnetic field in gap (150mT at sample)

RF currents passing Indium in gap vertically



Alternative calorimetry chamber II

• Pure Nb sample
→ high temperature treatments possible
• Baking
• N-doping
• Diffusion coating (e.g. Nb3Sn)

• UHV tight system
→ Indium wire gasket

• Height adjustment possible

• Short sample holder?
→ Electron beam welding required
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Surface resistance vs. Temperature

𝑅𝑆 = 𝑅𝐵𝐶𝑆 + 𝑅𝑟𝑒𝑠 =
𝐴𝜔2

𝑇
exp −

Δ

𝑘𝐵𝑇
+ 𝑅𝑟𝑒𝑠
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Data

fit R
BCS

 (T) + R
Res

413 MHz
16 mT, cw

1285 MHz
6.7 mT, cw

1285 MHz
13 mT, 30% DF

𝐴
μΩ

GHz 2K
4.1 ± 0.2 2.86 ± 0.13 3.37 ± 0.15

Δ [meV] 1.60 ± 0.02 1.29 ± 0.02 1.34 ± 0.02

𝑅𝑟𝑒𝑠 [nΩ] 4.3 ± 0.5 83 ± 12 136 ± 12



RF critical field

• Pulsed RF power with small duty factor (DF)

• Increase power until quench occurs

• 𝐵𝑐 𝑇 = 𝐵𝑐,0 ⋅ 1 −
𝑇

𝑇𝑐
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Fit: 𝑇𝑐 = 9.40 ± 0.15 𝐾
Literature: 𝑇𝑐 = 9.25 𝐾



RF penetration depth

• Gorter-Casimir: 𝜆 𝑇 =
𝜆0

1−
𝑇

𝑇𝑐
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• Slater´s Theorem and geometry factor of sample relate Δ𝜆 = 𝜆 𝑇 − 𝜆0 to Δ𝑓

• 𝜆 𝑇 = 0 from fit
→ electron mean free path 𝑙 and RRR

• Value very close to 𝜆𝐿 = 32 nm
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𝜆0 = 32.5 ± 0.7 nm



Summary & Outlook

• QPR commissioned successfully
• RF measurements up to 125 mT possible
• Accuracy issues

• Simplified sample geometries investigated (ongoing)
• Issues with Indium gasket

• Take part in followup projects:
• ARIES (EuCARD3)
• ANR-DFG proposal
• EASITrain

• ToDo beyond Milestones and Deliverables: 
Test first non-Nb sample
( if possible within last year of EuCARD2 )
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B A C K U P    S L I D E S
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Optimization of HZB design

• Optimization criteria
• Phase space: Frequency, field strength, temperature
• High resolution

• Full parameterization with CST
• Maximizing figures of merit
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Baseline
(CERN QPR)

Optimized

Operating frequencies 400 / 800 / 1200 MHz
433 / 866 / 1300 MHz

(TESLA)

Focussing factor*

1

𝑈
 

𝑠𝑎𝑚𝑝𝑙𝑒

|𝐻2|𝑑𝐴
5.15 ∗ 107  𝐴

2

𝐽 11.2 ∗ 107  𝐴
2

𝐽

Risk of field emission
BSample/Epk

4.68 mT/(MV/m) 7.44 mT/(MV/m)

Operating range
BSample/BPk

0.81 0.89

Microphonics
1st mechanical mode

69 Hz 172 Hz

* fraction of field exposure between sample and resonator

[R. Kleindienst, „Development
of an Optimized Quadrupole
Resonator at HZB“, SRF 2013]

• Radius of rods increased
8 mm → 13 mm

• Gap reduced
(pole shoes ↔ sample)
1 mm → 0.5 mm



Surface resistance measurement

• First sample: with indium gasket

• High surface resistance

• Influence of indium at upper gasket visible
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• Second sample: no indium

• 850 °C bake before BCP

Indium: 𝑇𝑐 = 3.4 K



RF penetration depth

•
Δ𝑓

𝑓
=
1

4
 𝑉
𝑉+Δ𝑉

𝜖0 𝐸
2−𝜇0 𝐻

2 d𝑉

𝑈

• Electric contribution negligible, d𝑉 = d𝐴 d𝜆

• Δ𝜆 = 𝜆 𝑇 − 𝜆0 = −
𝐺Sample

𝜋𝜇0𝑓2
Δ𝑓

• 𝜆0(𝑙) = 𝜆𝐿 1 +
𝜋𝜉0

2𝑙
(Pippard)

• 𝑅𝑅𝑅 ≈
𝑙 [nm]

2.7
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