

CLIC News

WP12 Annual Meeting, Daresbury, 5 April 2016

CLIC accelerating structure

Outside

11.994 GHz X-band 100 MV/m Input power ≈50 MW Pulse length ≈200 ns Repetition rate 50 Hz

HOM damping waveguide

Inside

25 cm 6 mm diameter WP12 Annual Meeting, Daresbury, 5 April 2016beam aperture

CLIC accelerating structure specifications include:

- a gradient 100 MV/m,
- a pulse length 180 ns,
- and breakdown rate, BDR, 3x10⁻⁷/pulse/m.

BDR is the fraction of pulses which have a vacuum arc. Breakdown currents and lost acceleration result in lost luminosity on that pulse.

$$\mathcal{L} = H_D \frac{N^2}{4\pi\sigma_x \sigma_y} n_b f_r$$

The three quantities are related to each other: $BDR \propto E^{30} \tau^5$

WP12 Annual Meeting, Daresbury, 5 April 2016

Testing Capability at CERN

Xbox-1 Control Control Contro		Xbox-3 Image: Comparison of the second of the sec
CPI 50MW 1.5us klystron Scandinova Modulator Rep Rate 50Hz Beam test capabilities	CPI 50MW 1.5us klystron Scandinova Modulator Rep Rate 50Hz	4x Toshiba 6MW 5us klystron 4x Scandinova Modulators Rep Rate 400Hz
Previous tests: 2013 TD24R05 (CTF2) 2013 TD26CC-N1 (CTF2) 2014-15 T24 (Dogleg)	Previous tests: 2014-15 CLIC Crab Cavity	Medium power tests (Xbox-3A): 2015 3D-printed Ti waveguide 2015 X-band RF valve
Ongoing test: Aug2015- TD26CC-N1 (Dogleg)	Ongoing test: Sep2015- T24OPEN	Major increase in testing capacity!

WP12 Annual Meeting, Daresbury, 5 April 2016

-band

X-band test stands at KEK and SLAC

SLAC: CLIC Structure Conditioning

Xbox II Architecture

-SLAC

Performance summary at CLIC specifications

Conditioning

Accelerating structures do not run right away at full specification – pulse length and gradient need to be gradually increased while pulsing. Typical behaviour looks like this:

WP12 Annual Meeting, [4 million pulses per day at 50 Hz

Comparing conditioning

Longer term operation

WP12 Annual Meeting, Daresbury, 5 April 2016

Long term evolution of BDR

WP12 Annual Meeting, Daresbury, 5 April 2016

New baseline structure: major objective

Analysing results and re-optimizing CLIC, we have a new baseline structure. We expect to get to 120 MV/m unloaded, closing the gap we Disc #23 bac Anite Perez Fontenia WD = 45.9 mn expect from beam loading. Mechanical design done. To be built Wall geometry [mm] and tested. Elliptical shape Polynomial shape 0.5 0L _4 -3 -2 -1 0 Width=11mm ->10.1mm R = 2.5mmR = 0.5 mmOpening=8mm->7.8mm

WP12 Annual Meeting, Daresbury, 5 April 2016

Symmetry plane structures

VS.

Structures in parts along symmetry planes have significant potential advantages cost, joining, heat and chemical treatment, materials. Does require 3-D micron precision milling which is now possible. Early tries with quadrants yielded unsatisfactory results, but don't believe this was

end of story. We're back!

WP12 Annual Meeting, Daresbury, 5 April 2016

Structure in halves – testing in XBox-2

CERN design and high-gradient testing, SLAC fabrication.

Hard copper version under preparation.

WP12 Annual Meeting, Daresbury, 5 April 2016

Applications of X-band acceleration

Australian Light Source

Thompson/Compton source – few 100s MeV

Smart*Light, NL Compact Compton source WP12 Annual Mee few 10s MeV

Tsinghua, China

Selected collaborations on applications of Xband and high-gradient

- XbFEL H2020 design study to be resubmitted in 2017.
- XBox3-B to Australian light source, Monash University proposal.
- X-band deflector and accelerating structure testing for X-band option for XFEL at SINAP.
- X-band linearizer system with Fermi@Trieste and SwissFEL

Selected collaborations on applications of Xband and high-gradient - continued

- Trans-National Access for Xboxes in Aries (EUCARD3) proposal.
- SMART*Light, Dutch proposal for compact Compton X-ray source.
- Transverse deflector based on 50 MW klystron for SINBAD at DESY.
- X-Band Thompson source energy upgrade at Tsinghua University.
- Medical linac structures TERA/KT and Lancaster/Cockcroft.

We gain experience with help and resources of other projects! For example XFEL-type accelerating structures are similar in gradient and iris aperture to CLIC 380 GeV structures.

International Workshop on Breakdown Science and High Gradient Accelerator Technology (HG2016)

6-8 June 2016 Argonne National Laboratory US/Central timezone

https://indico.hep.anl.gov/indico/conferenceDisplay.py?ovw=True&confId=963

WP12 Annual Meeting, Daresbury, 5 April 2016