













# SRF HOM Diagnostics for the European XFEL



Nicoleta Baboi, Ursula van Rienen Roger M. Jones

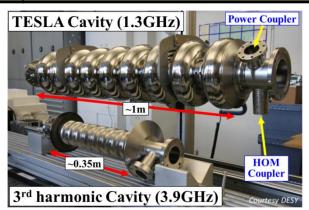
DESY, Univ. of Rostock, Univ. of Manchester/ Cockcroft Inst.







https://indico.cern.ch/event/494553/overview


# WP 12.4 SRF HOM Diagnostics for for European XFEL

| TASK 12.4 | <b>HOM Distribution</b> | R.M. Jones                   |
|-----------|-------------------------|------------------------------|
| Sub-Task  | Name                    | Coordinating Institute/Univ. |
| 12.4.1    | HOMBPM                  | DESY                         |
| 12.4.2    | HOMCD                   | Cockcroft/Univ. Manchester   |
| 12.4.3    | HOMGD                   | Univ. Rostock                |

#### ☐ Overall Aim

- ✓ Beam phase (w.r.t. R.F.) and position within both 3.9 GHz and 1.3 GHz cavities
- ✓ Potentially provides remote structure alignment
- ✓ Transverse wakes are an issue! ( $\sim \omega^3$ )

➤N. Joshi, PDRA (grad. RHUL)



<sup>➤</sup> Four-year task due to staff resources commuted to Three years

### Task 12.4 HOM Diagnostics in SC Accelerator Cavities -Staff

- □ <u>Sub-task leaders</u>: Nicoleta Baboi (DESY), Ursula van Rienen (Univ. Rostock), Roger M. Jones (CI/Univ. Manchester).
- □ P.D.R.A.s: N. Joshi (CI/Univ. of Manchester), Thomas Flisgen (Univ. of Rostock)
- ☐ Ph.D.s: Liangliang Shi (DESY/Univ. of Manchester),

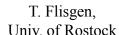
WP 12.4.1



N. Baboi, DESY



L. Shi , Univ. of Manchester/DES


<u>WP 12.4.2</u>



N. Joshi, CI/Univ. of Manchester

WP 12.4.3







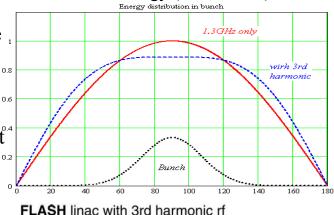
U. Van Rienen, Univ. of Rostock

### 12.4 FLASH Third Harmonic Cavities

- ☐ Fermilab has constructed a third harmonic accelerating (3.9GHz) superconducting module and cryostat for a new generation high brightness photo-injector.
- This system will compensate the nonlinear distortion of the longitudinal phase space due to the RF curvature of the 1.3 GHz TESLA cavities prior to bunch compression.





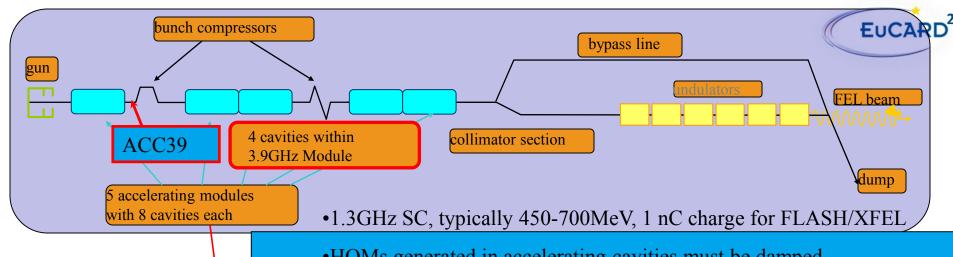

- ☐ The cryomodule, consisting of <u>four 3.9GHz cavities</u>, has been installed in the FLASH photoinjector downstream, of the first 1.3 GHz cryomodule (consisting of 8 cavities).
- ☐ Four 3.9 GHz cavities provide the energy modulation, ~20 MV, needed for compensation.
- ☐ Eight cavities are required per module for XFEL

#### WP 12.4 FLASH 3.9 GHz Parameters

|                                     | <del> </del>          |
|-------------------------------------|-----------------------|
| Number of Cavities                  | 4                     |
| Active Length                       | 0.346 meter           |
| Gradient                            | 14 MV/m               |
| Phase                               | -179°                 |
| $R/Q$ [= $U^2/(wW)$ ]               | 750 Ω                 |
| E <sub>peak</sub> /E <sub>acc</sub> | 2.26                  |
| B <sub>peak</sub>                   | 68 mT                 |
| $(E_{acc} = 14 \text{ MV/m})$       |                       |
| Q <sub>ext</sub>                    | 1.3 X 10 <sup>6</sup> |
| BBU Limit for<br>HOM, Q             | <1 X 10 <sup>5</sup>  |
| Total Energy                        | 20 MeV                |
| Beam Current                        | 9 mA                  |
| Forward Power,                      | 9 kW                  |
| per cavity                          |                       |
| Coupler Power,                      | 45 kW                 |
| per coupler                         |                       |

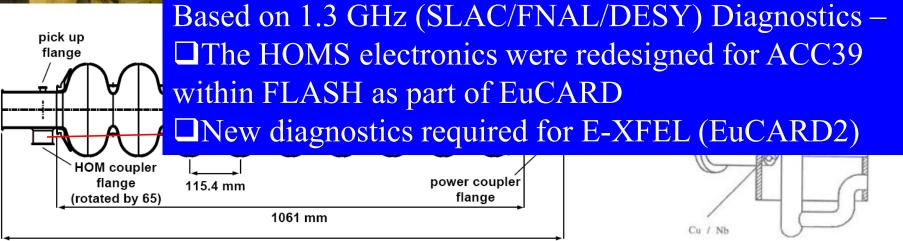
- Adding a harmonic ensures the  $_{1}$   $_{2}^{nd}$  derivative at the max is zero for total field (could use any of the harmonics in the expansion, but using the lowest freq. ensures the transverse wakefields  $\sim \omega^{3}$  are minimised).
- ☐ The third harmonic system (3.9GHz) compensates for the nonlinear distortion of the longitudinal phase space due to cosine-like voltage curvature of 1.3 GHz cavities.
- ☐ It linearises the energy distribution upstream of the bunch compressor thus facilitating a small normalized emittance ~1.10<sup>-6</sup> m.rad.

#### Illustrative energy (not to scale)

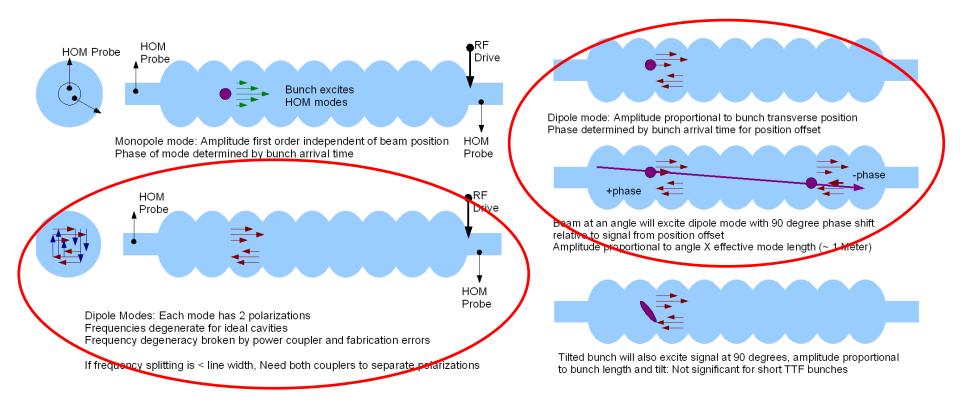



4 MeV 130 MeV 380 MeV 1000 MeV 3.3 mm ~250 μm 10 μm 2.5 kA

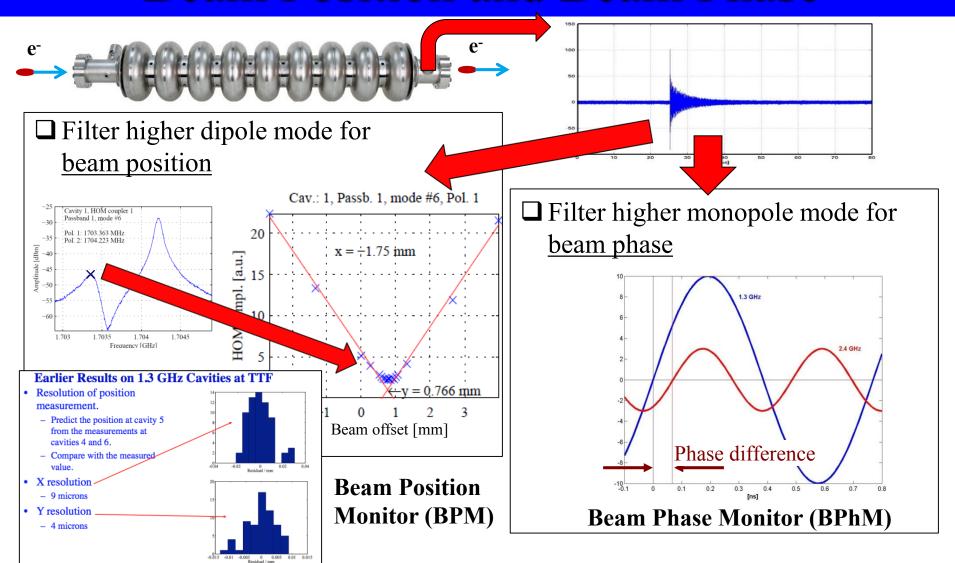






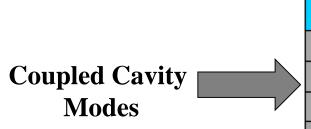







- •HOMs generated in accelerating cavities must be damped.
- •Monitored HOMs facilitate beam/cavity info
- Forty cavities exist at FLASH.
- -Couplers/cables already exist.
- -Electronics enable monitoring of HOMs (wideband and narrowband response).



### WP 12.4 Response of HOM modes to beam




### WP 12.4 Analysis of Narrowband Signals – Beam Position and Beam Phase



R.M. Jones, Overview of SRF HOM Diagnostic Task, Cockcroft Inst., Daresbury, April 4<sup>th</sup> – 5<sup>th</sup>, 2016

# 12.4 Band Structure of HOMs in 3.9 GHz Cavities

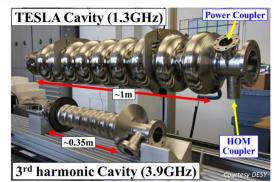


| Dipole band | Frequency (GHz) | R/Q (Ω/cm <sup>2</sup> ) |
|-------------|-----------------|--------------------------|
| 1           | 4.7245          | 10.572                   |
| 1           | 4.8327          | 50.307                   |
| 1           | 4.9270          | 30.174                   |
| 2           | 5.4050          | 5.057                    |
| 2           | 5.4427          | 20.877                   |
| 2           | 5.4678          | 15.776                   |
| 5           | 9.0581          | 2.171                    |
| 5           | 9.0664          | 4.116                    |

#### RESOLUTION

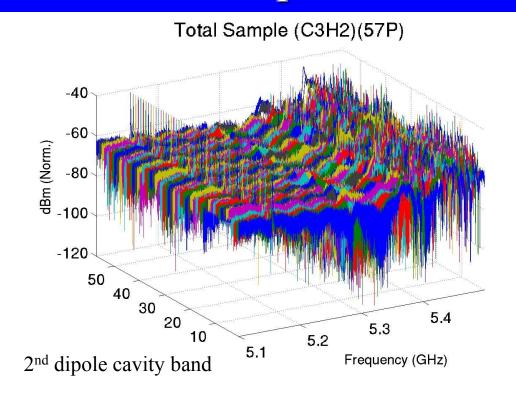
 $x \sim 12 \ \mu m$  ,  $y \sim 40 \ \mu m$  (FLASH Module mode at 5 GHz)<sup>1</sup>

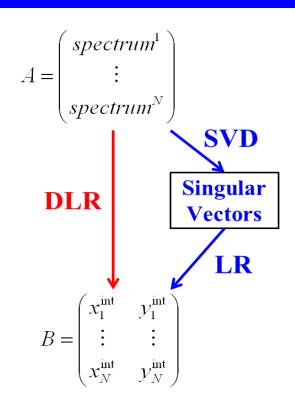
 $x \sim 50 \ \mu m$  ,  $y \sim 100 \ \mu m$  (FLASH Cavity mode at 9GHz)<sup>1</sup>


C.F. 1.3 GHz Cavity Modes

Trapped Cavity

Modes



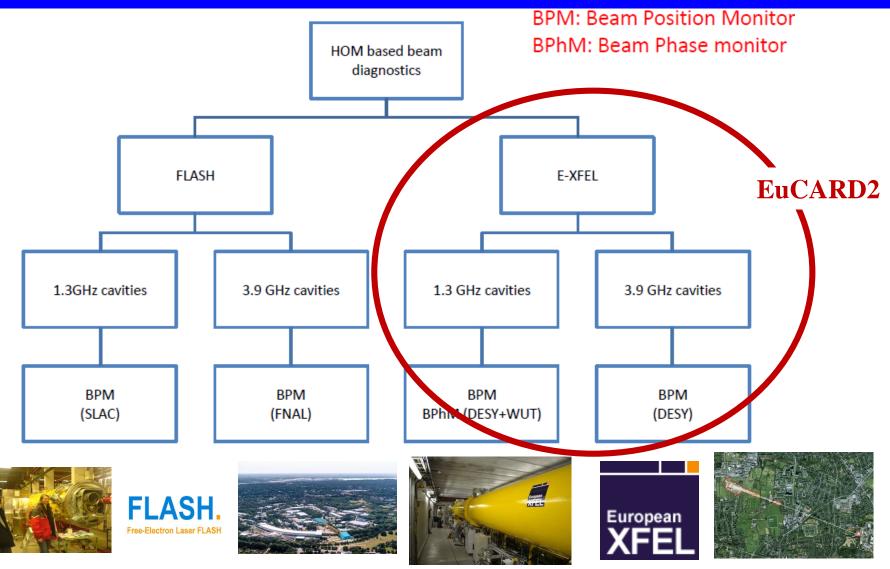


 $x \sim 9 \mu m$ ,  $y \sim 4 \mu m$ (FLASH 1.3 GHz cavities)<sup>2</sup>



- 1. Baboi et al, IBIC 2014
- 2. Molloy et a., PRST-AB 2006

### WP 12.4 Principle of HOM BPMs: DLR & SVD






- ☐ Direct Linear Regression (DLR)
  - $A \cdot M + B_0 = B$

$$A = U \cdot S \cdot V^T \longrightarrow A_S$$

$$A_S \cdot M_S + B_{0S} = B$$

### WP 12.4 Response of HOM modes to beam EuCARD -> EuCARD2



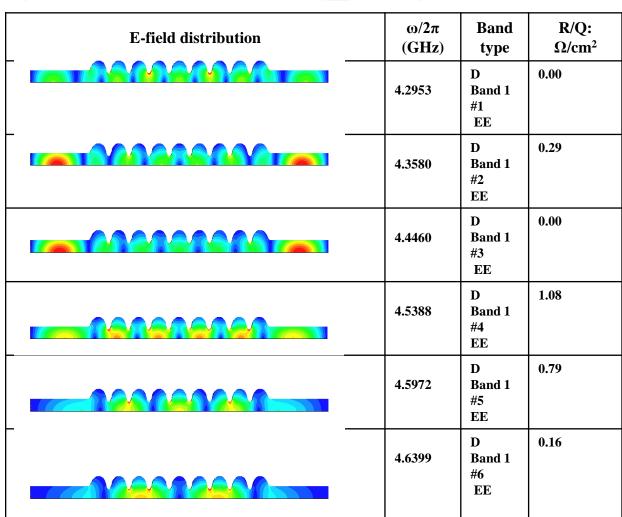
R.M. Jones, Overview of SRF HOM Diagnostic Task, Cockcroft Inst., Daresbury, April 4<sup>th</sup> – 5<sup>th</sup>, 2016

# 12.4 Summary of Plans and Status of HOM Position Diagnostics

|                  | FLASH                                                                                                                                                                                                                                                                                                                                                      | European XFEL                                                                                                                                                                                                                                                                                                                                         |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.3 GHz Cavities | <ul> <li>Electronics installed in 40 cavities (SLAC/CEA/DESY)</li> <li>Raw signals used for beam centering</li> <li>EuCARD<sup>2</sup>: Unstable calibration (phase or even frequency drifts?)</li> </ul>                                                                                                                                                  | - Electronics under design, based on same frequency as for FLASH (WUT/DESY)                                                                                                                                                                                                                                                                           |
| 3.9 GHz Cavities | <ul> <li>Theoretical and experimental studies (EuCARD: UROS, UMAN, DESY together with FNAL)</li> <li>Defined specs for HOMBPM electronics (also for XFEL)</li> <li>Electronics under construction (FNAL), to be installed and tested/ commissioned this autumn</li> <li>EuCARD<sup>2</sup>: Unstable calibration (same problem as for 1.3 GHz?)</li> </ul> | <ul> <li>Electronics under design, based on same frequency ranges as for FLASH (DESY)</li> <li>But much more challenging:         <ul> <li>8 coupled cavities cf. 4</li> <li>4.5 cf 1 MHz bunch frequency Different orientation of cavities</li> </ul> </li> <li>EuCARD<sup>2</sup>: Need significant theoretical and experimental studies</li> </ul> |

# 12.4 Summary of Plans and Status of HOM Phase Diagnostics

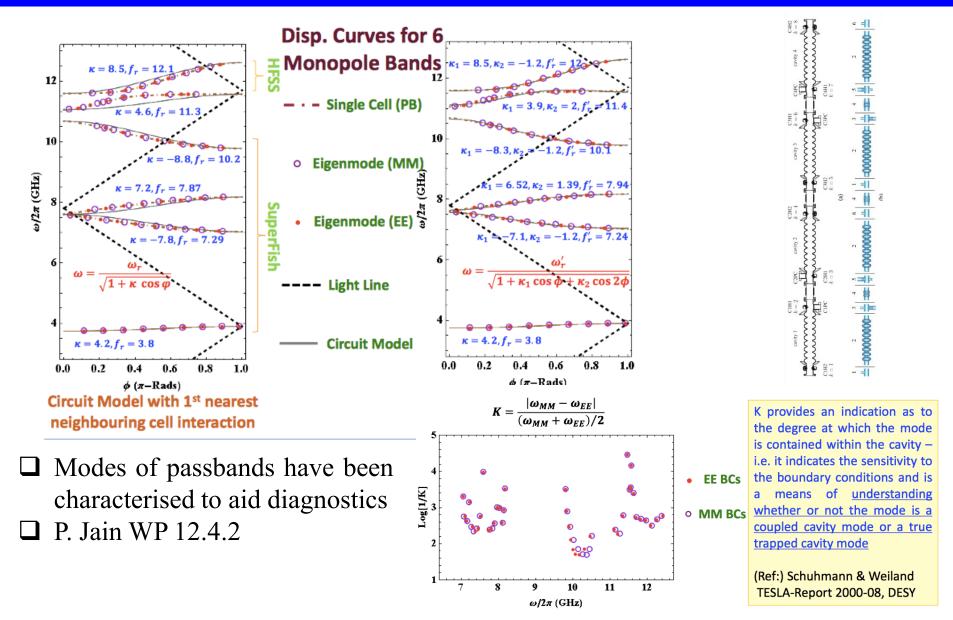
|                  | FLASH                                                                                                                                                                                            | European XFEL       |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1.3 GHz Cavities | <ul> <li>Proof-Of-Principle made (SLAC/CEA/DESY)</li> <li>Electronics under design (same as for XFEL HOMBPM, WUT/DESY)</li> <li>EuCARD<sup>2</sup>: experimental studies</li> </ul>              | - Same as for FLASH |
| 3.9 GHz Cavities | <ul> <li>So far no isolated monopole mode identified, which could be used for phase monitoring</li> <li>Theoretical (and experimental) studies (lower priority in EuCARD<sup>2</sup>)</li> </ul> | - Same as for FLASH |


See WP12.4.1 talk by L. Shi/N. Baboi

### 12.4 HOMs in 3.9 GHz SC Cavities

| Yab Yab Y |  |
|-----------|--|

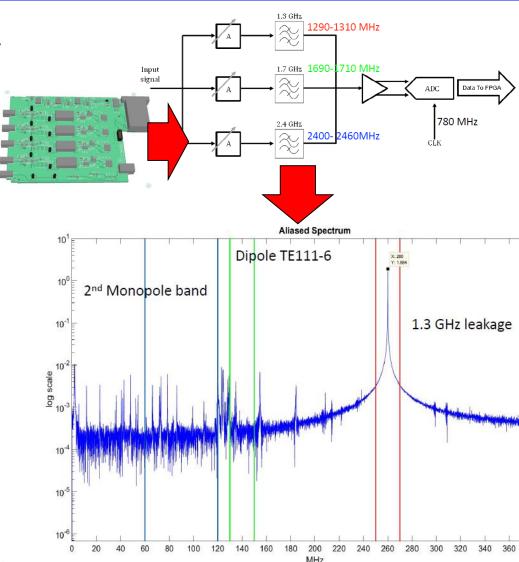
- ☐ Cavity modes up to 10GHz allows identification of potential trapped modes and modal types, monopole, dipole, quadrupole and sextupole
- ☐ Contains all 6 cavity dipole bands below 10GHz
- ☐ HFSS results agree well with by MAFIA simulations
- ☐ Modes within the modules can be inter-cavity, beam pipe or trapped
- Majority within the first six passbands are inter-cavity computationally expensive and sensitive to small geometrical


perturbations!



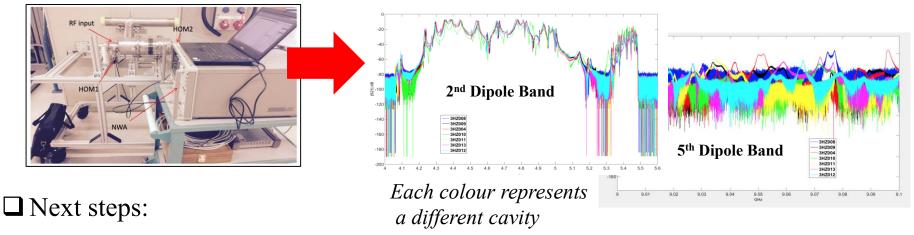
☐ We require characterization of a limited number of modes for HOM diagnostics (large R/Q desirable)

R.M. Jones, Overview of SRF HOM Diagnostic Task, Cockcroft Inst., Daresbury, April 4<sup>th</sup> – 5<sup>th</sup>, 2016


### WP 12.4 Mode Characterisation



R.M. Jones, Overview of SRF HOM Diaglosus 1001, Control 1001, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 11011, 110

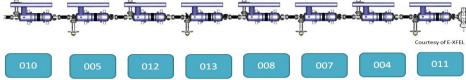

### WP 12.4 Repeatability Measurements on 1.3 GHz HOMBPMs

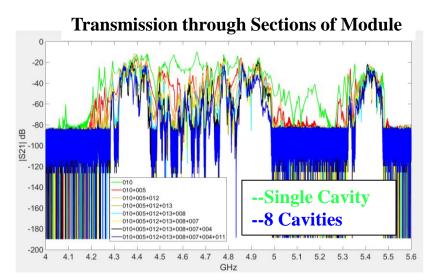
- ☐ Initial beam with test electronics for 1.3 GHz cavities
  - Identified monopole and dipole mode regions
  - Prototype electronics being fabricated (Samer Bou Habib – WUT & DESY)
- □ Redesign of non-functioning 5 GHz electronics for 3.9 GHz cavities complete (see M18 report)
  - Boards under construction (Thomas Wamsat –DESY)

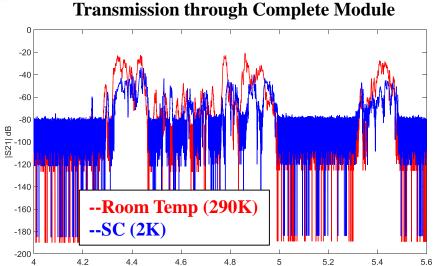


### WP 12.4 Summary of Transmission Measurements on Third Harmonic Cavities

- ☐ Measured (L. Shi & N. Baboi) S21 for seven out of the eight 3.9 GHz cavities needed for XFEL modules
  - Room temperature measurements of S21 (sans final input coupler)
  - 3HZ010 has an input coupler and was also measured at 2K
  - These measurements may shed some light on subsequent measurements to be performed on the 8 cavities with a module (coupled cavity spectrum)

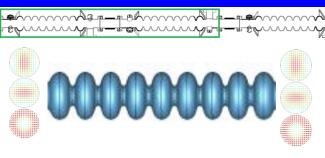


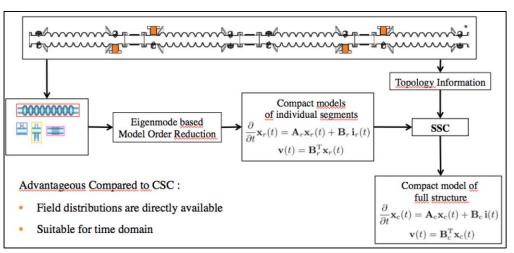


- Measure S21 for cavities in string (at room temperature and at 2K)
- Measure S21 for reserve 3.9GHz cavities (and later for 2<sup>nd</sup> injector)
- See WP12.4.1 talk by L. Shi
  R.M. Jones, Overview of SRF HOM Diagnostic Task, Cockcroft Inst., Daresbury, April 4<sup>th</sup> 5<sup>th</sup>, 2016


### WP 12.4 Measurements on S-Matrices through 3.9 GHz 8-Cavity Module



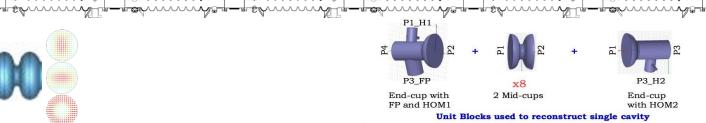
- $\Box$  Transmission measurements at 293 K and 2 K. (see L. Shi's talk) -ports terminated with 50  $\Omega$  loads
- ☐ Dense spectrum of coupled modes

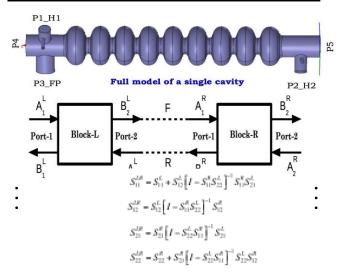





R.M. Jones, Overview of SRF HOM Diagnostic Task, Cockcroft Inst., Daresbury, April 4th – 5th, 2016


# WP 12.4 Simulations of S-Matrices and Eigenmodes through XFEL 3.9 GHz 8-Cavity Module

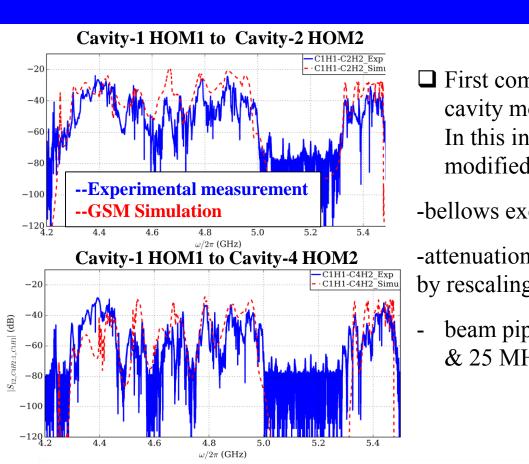





CSC –to State Space Concatenation (SSC)

-see T. Flisgen's talk

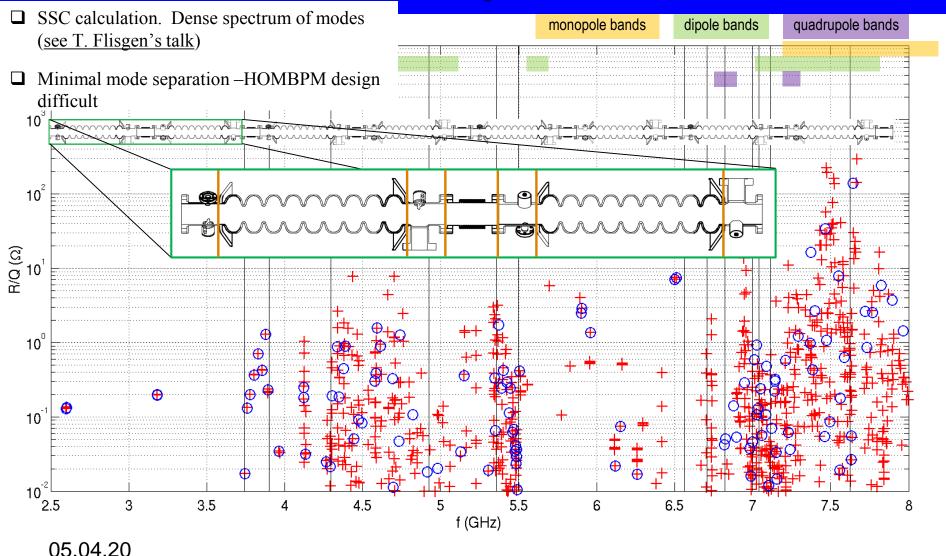




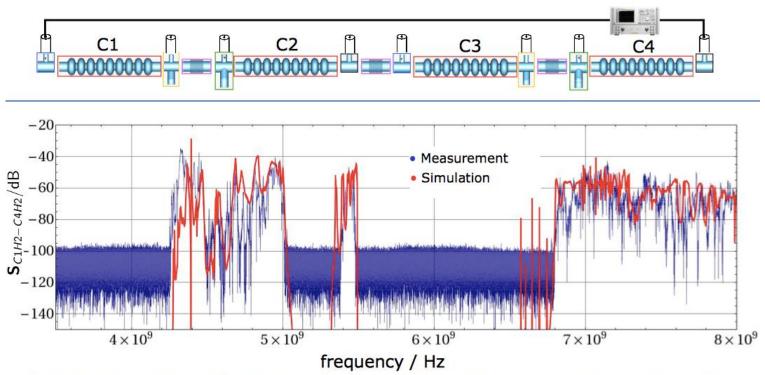

Globalised Scattering Matrix (GMS)

-see N. Joshi's talk

R.M. Jones, Overview of SRF HOM Diagnostic Task, Cockcroft Inst., Daresbury, April 4th - 5th, 2016


### WP 12.4: Experimental Measurement of S<sub>21</sub> vs GSM Simulations in 8-Cavity XFEL Chain




- ☐ First comparison of HOM spectrum from 8 cavity module AH1 at 2K (see N. Joshi's talk) In this initial simulation some parameters were modified to aid comparison:
- -bellows excluded to enable rapid calculation
- -attenuation in cables, transitions etc accounted for by rescaling ordinate
  - beam pipe reflections accounted for by 45 MHz & 25 MHz rescaling of 1st and 2nd bands

2016

## WP 12.4 R/Q Calculations for Complete 3.9 GHz 8-Cavity XFEL Module



# WP 12.4 S<sub>21</sub> of HOMs in 3.9 GHz Cavities at FLASH



T. Flisgen, H.-W. Glock, P. Zhang, I. R. R. Shinton, N. Baboi, R. M. Jones, and U. van Rienen: "Scattering parameters of the 3.9 GHz accelerating module in a free-electron laser linac: A rigorous comparison between simulations and measurements", Phys. Rev. ST Accel. Beams, 17:022003, February 2014

- **▶** Using concatenation techniques transmission through the complete FLASH module ACC39 is possible- using Coupled Scattering Calculation (CSC)
- □ Accurately compute each section
- ☐ Concatenate for complete module

#### Deliverables & Milestones

#### All taken from:

Deliverables (http://eucard2.web.cern.ch/science/deliverables)

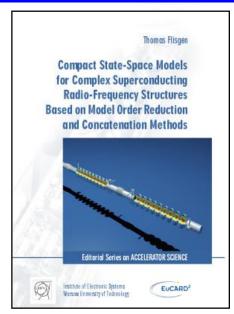
Milestones (http://eucard2.web.cern.ch/science/milestones)

#### Deliverables

- □ D12.3 Design of electronics for XFEL HOM diagnostics (M18 –complete)<sup>†</sup>
- □ D12.7 Characterisation of HOMS in the 8-cavity XFEL module (M36)<sup>†</sup>✓
- □ D12.4.1 Additional Report on characterisation of HOMS in XFEL coupled 3HC cryomodule (M48 –April 2017)<sup>‡</sup>

#### Milestones

☐ MS82 Completed coupled cavity simulations of 8-cavity module (M36)


<sup>†</sup>Commuted from milestones

<sup>‡</sup> Original deliverable

<sup>√</sup> On track

### Concluding Remarks on Task 12.4

- ☐ Ongoing measurements (both parasitic and otherwise) on HOM diagnostics at FLASH provide vital information on methodology for XFEL
- ☐ Stand-alone S21 measurements on 3<sup>rd</sup> harmonic cavities indicate similar spectra
- ☐ Simulation of 4 coupled cavities was challenging -8 in the XFEL module is even more computationally demanding. Initial results e-field encouraging!
- ☐ A compendium of modes will be generated for the 8-cavity chain within modules in XFEL
- ☐ On track for deliverables/milestone. Had several skype meetings to review progress to date.
- □ Publication highlights: PRST-AB paper 2014 (T. Flisgen et al, *Scattering parameters of the 3.9 GHz accelerating module in a free-electron laser linac: A rigorous comparison between simulations & measurements*). + Ph.D. Published as a EU Monograph -Vol. 33, Oct 2015 + Accel. News article June 2015 (N. Baboi + M. Dehler) on wakefield HOM monitors. Several IPAC06 + Linac06 papers
- ☐ HOMSC16 August 2016 will be held at the Univ. of Rostock (http://indico.cern.ch/event/465683/)
  R.M. Jones, Overview of SRF HOM Diagnostic Task, Cockcroft Inst., Daresbury, April 4<sup>th</sup> 5<sup>th</sup>, 2016















| Workshop on HOMs in SC Cavities               |
|-----------------------------------------------|
| ☐ HOMSC16 at Univ. of Rostock                 |
| ☐ Dates: Aug 22-24, 2016                      |
| ☐ Early Reg June 25 <sup>th</sup> , 2016      |
| ☐ Papers published as NIMA special issue?     |
| ☐ Contact Thomas Flisgen for further details! |

### Task 12.4 Talks

- □ Overview of SRF HOM Diagnostics for the European XFEL task,
- R.M. Jones (University of Manchester/Cockcroft Inst.)
- □HOMBPM: Measurements of FLASH and XFEL Cavities,
- L. Shi (DESY/University of Manchester), N. Baboi (DESY)
- ☐ HOMCD: Characterisation of HOMs in FLASH and XFEL Coupled Cavities using GSM, N. Joshi, R.M Jones (*University of Manchester*)
- □HOMGD: Progress On SCC Simulations in FLASH and XFEL
- Cavities, T. Flisgen, U. Van Rienen (*University of Rostock*)