

Mg Photocathode in SRF Gun for medium current e⁻ - beam

Jochen Teichert, Rong Xiang on behalf of the SRF Gun Crew at ELBE

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Outline

- 1. Status of SRF Gun II & photocathodes
- 2. Laser cleaning for Mg photocathode
- 3. Metallic photocathode in SRF gun-II
- 4. Summary

EuCARD-2 3rd Annual WP12 Meeting 4-5 April 2015 at STFC Daresbury Laboratory

HELMHOLTZ | ZENTRUM DRESDEN | ROSSENDORF

Jochen Teichert I HZDR

1. Status of ELBE - SRF Gun II & photocathodes

ELBE user requirements for SRF gun (simulation result @ 7MV/m)

user application	bunch charge	norm trans. emitt.	final bunch length	beam size at IP	average current
IR FELs (13 MHz)	77 pC	2.2 µm	< 1 ps		1 mA
Neutrons (100 kHz)	500 pC				50 µA
Positrons (500 kHz)	200 pC				100 µA
THz radiation (100 kHz)	350 pC		200 fs		35 µA
CBS x-rays (10 Hz)	450 pC		1 ps	30 µm	

J. Teichert, ERL2015

1. Status of ELBE - SRF Gun II & photocathodes

GUN

- E_{acc} = 8 MV/m CW (20.5 MV/m peak field)
- 5 kV DC bias @ Cathode
- dark current in FC <100 nA @8 MV/m
- UV laser: 258 nm, 100 kHz, Gaussian

PHOTOCATHODE

- Cu cathode 2 x 10⁻⁵ @ 258 nm
- the 1st experiment of Cs₂Te in gun failed
- Mg cathode

Motivation: to search for a "Clean" (Cs-free) cathode for SRF gun

Metal (polycrystalline)	QE (%)	φ (eV)
Cu	10 ⁻⁶ - 10 ⁻⁵	4.6
Mg	10 ⁻⁶ - 10 ⁻⁴	3.6
Мо	10 ⁻⁶	4.5
Nb	10 ⁻⁶	4.3
Pb	10 ⁻⁶	4.25

Working plan:

- laser cleaning test with 200 mW UV laser (V)
- Ar⁺ ion beam cleaning
- heating cleaning

Lide, D. R.. Properties of Solids, in: *CRC Handbook of Chemistry and Physic, Internet Version 2005*. Boca Raton, FL: CRC Press; 2005, P. 124 S. Halas, Materials Science-Poland, Vol. 24, No. 4, 2006 EuCard2. WP12

Jochen Teichert I HZDR

laser parameter:

UV: 258 nm (4.8 eV) rep. rate: 100 kHz unltra short pulse: 10ps mean power: 100 mW min. spot: r=30 µm

- Intensity threshold *
- Illuminating duration
- Surface roughness of sample
- Mono-crystal or poly- Mg

EuCard2, WP12

important:

adjust focusing lens position to search for the suitable power density

* photoemission in gun 0.1-0.2 W/mm²

EuCard2. WP12

in test chamber

EuCard2. WP12

in transport chamber

Photograph of laser cleaning setup

accurate QE measurement with LED

QE measurement

EuCard2. WP12

3. Mg photocathode in SRF gun-II

Laser phase scan and QE of Mg photo cathode in SRF gun

EuCard2. WP12

3. Mg photocathode in SRF gun-II

Dark current

3. Mg photocathode in SRF gun-II

QE increased 2 orders of magnitude

- removal of the surface contamination (MgO, φ: 4.2eV)
- plasmon enhanced photoemission due to roughness (nm level)*

Experiment very well repeatable

Cleaned Mg is very sensitive

- stable in 10⁻⁹ mbar
- 10⁻⁸mbar, loses 60% of QE in the 1st day

Effect of surface change

- reduced work function
- thermal emittance
- dark current

*Qian, H. J. et al., Applied Physics Letters, 97, 253504 (2010)

EuCard2. WP12

Long-term photo emission test of a Pb/Nb photo cathode at HZDR

Test chamber for laser cleaning in the UV drive laser room

- Nb plug from DESY for SC cavity
- Pb layer deposition at NCBJ Swierk
- at HZDR:

Pb/Nb plug of the SC gun cavity

EuCard2. WP12

Cs₂Te will be carefully going on... SRF Gun-II will run with Cs₂Te in 2016.

- SC RF gun with NC photocathode is promising but very challenging ...
- Metallic photocathodes are safe for SC cavity.
 Cu for the gun commissioning and low bunch charge measurement Mg can reach high QE of 10⁻³, for medium current application.
- Semiconductor photocathodes for high bunch charge /high current Cs₂Te will be back in SRF gun in 2016 GaAs (Cs,O), GaN(Cs) considered as candidates (proposed HOPE2) Cs₂KSb from HZB

