

SiPMs for the SciFi Tracker at LHCb

David Gerick

Physikalisches Institut, Heidelberg

HighRR bi-weekly seminar

30th of March, 2016

Outline

- introduction to the experiment
 - ► LHCb
 - Scintillating Fibre (SciFi) Tracker
- silicon photomultipliers
 - 128 channel arrays
 - irradiation damage
- neutron irradiation damage
 - dark count rates per channel
 - noise cluster rates
- efficiency and resolution (testbeam results)

LHCb

- 1 out of 4 large experiments at the Large Hadron Collider
- 728 authors from 69 institutes in 16 countries (Jan. 2016)
- total >300 papers (Mar. 2016)
- mainly investigate decays of beauty- and charm hadrons
 - search for CP violation
 - rare decays
 - observation of tetra- and pentaquarks

The Scintillating Fibre Tracker

upgrade of the downstream tracking stations during the next shutdown of the LHC in 2019/20

The Scintillating Fibre Tracker

- 3 stations of each 4 layers
- cover a total area of 360m²
 - largest scintillating fibre tracker ever built
- fibres are glued into mats

5m

- resolution < 100µm (in x)</pre>
- radiation length < 1%/layer</p>
- about 600.000 SiPM channels
- 40 MHz read-out (trigger-less at every BX)

The Scintillating Fibre Tracker

- SiPM channel size
 - 4 x 24 pixels à 57.5 x 62.5 μm²
 - 230 x 1 500 μm²
 - ▶ 128 channels per arrays \rightarrow 325.9 x 1.5 mm²
- fibre dimensions
 - diameter 250 μm
 - length ~250 cm

mat cross-section

SiPM array

David Gerick

HighRR bi-weekly seminar

30.03.2016

X-talk might trigger neighbor channels

Fibre mat production

silicon photomultipliers

pixelated single photon detectors

working principle of SiPMs

- etched into silicon substrate
- each pixel is a p-n-junction
- operated in reverse bias Geiger mode
- incoming photons create e-h-pairs
- discharge of pixel via e-havalanche
- avalanche stopped via quench resistor

V_{bias}

Guard

ring n

Si^{*} Resistor

 p^+

Substrate p+

n

Si02

Intrinsic region

Al - conductor

p

silicon photomultipliers

► **HighR** : high resolution & high rate 50-100 µm 40MHz

- high PDE (≈40% @ 500nm @ 3.5V_{ov})
- allows detection of single photons

David Gerick

thermal noise in SiPMs

neutron irradiation damage inside SiPMs

- displacement of Si atoms in the crystal's lattice due to neutron scattering
- damage in silicon bulk (not on surface)
- vacancy

removed atom at lattice knot

insterstital

additional atom in between knots

HighRR bi-weekly seminar

 ▶ additional energy levels in bandgap increases probability of electron excitement into conduction band → increase of DCR

Radiation defects in the bandgap of Si

-200

-400

-600

-400

-300

-200

-100

X(cm)

- ▶ source of HE neutrons: backscattering from CALO € 0
- damage mostly neutrons
- NIEL* damage is normalized to 1MeV neutron damage
- no damage from thermal neutrons observed

dark count rate (DCR)

David Gerick

HighRR bi-weekly seminar

30.03.2016

DCR trigger scans

DCR from IV curves

25ns integrated DCR spectrum

resulting DCR values

noise cluster rate (NCR)

rate of clusters per 128 channel array after 6 \cdot 10¹¹ n_{eq}cm⁻²

 $T = -40^{\circ}C$ $V_{ov} = +3.5V$

cluster algorithm

- use charge weighted mean of cluster to get hit position for particle tracking
- clustering of channels suppresses noise, because:
 - noise appears uncorrelated in channels
 - higher thresholds suppress small noise signals

cluster distribution along 16 channels

Conclusion & Outlook

- thermal noise in SiPM arrays due to neutron irradiation is a hot topic for particle detectors in hadron colliders
- detectors are still functional after irradiation
- still single photon sensitive
 - ▶ after $12 \cdot 10^{11} n_{eq} \text{cm}^{-2}$, thanks to fast readout, cooling and annealing
- DCR per channel increases linearly with the neutron fluence
- After $6 \cdot 10^{11} n_{eq} \text{ cm}^{-2}$ at T = -40°C and V_{ov} = 3.5V
 - single channel DCR: 6-8 MHz (area = 1.5mm \cdot 250μ m = 0.375mm²)
 - NCR per 128 channel array: **3 MHz** at threshold set (1.5, 2.5, 4.5) with realistic annealing
- clustering at FEE is important to reduce total bandwidth to acceptable level
- Hamamatsu 2015 came back last week from irradiation facility

Thank you

... for your attention!

Backup

David Gerick

HighRR bi-weekly seminar

30.03.2016

irradiation damage to fibres

Fibre emission spectrum

SCSF-78MJ

32

David Gerick