14 Mar New PDF sensitive measurements from ATLAS

PDF4LHC

Mark Stockton McGill University on behalf of the ATLAS collaboration

Introduction

- Todays talk will focus on the brand new result on inclusive photons
 - This result is made using the 8TeV data
- The talk will also include a review of PDF studies related to photons at 7TeV

cGill

Slide 2 Mark Stockton

Year	Lumi	p_{T} range [GeV]		η regions	Isolation [GeV]
2010	880 nb ⁻¹	15	100	0 < η < 1.81 excluding 1.37-1.52	3
2010	35 pb⁻¹	45	400	0 < η < 2.37 excluding 1.37-1.52	3
2011	4.6 fb⁻¹	100	1000	0 < η < 1.37	7
		100	600	1.52 < η < 2.37	
2012	20.2 fb ⁻¹	25	1500	0 < η < 0.6	E_{T} dependent
		25	1100	0.6 < η < 1.37	
		25	650	1.56 < η < 1.81	
		25	650	1.81 < η < 2.37	

- References to ATLAS results shown:
 - 2010: Phys. Rev. D 83 (2011) 052005
 - 2010: Phys. Lett. B 706 (2011) 150-167
 - 2011: Phys. Rev. D 89, 052004 (2014)
 - PDF studies: ATL-PHYS-PUB-2013-018
 - 2012: STDM-2014-09

Inclusive photon production W McGill Slide 3

For single photon production there are three key processes

- At the LHC the Compton process dominates => Enables us to probe the gluon PDF
- At high E_{τ} there is a smaller fragmentation contribution => Could provide a cleaner gluon PDF probe than jets

Mark Stockton

Existing PDF studies

ATLAS PDF studies

Slide 6 Mark Stockton

Photon Isolation

- Cross section is measured for isolated photons
 - Needed to reduce the fragmentation contribution
 - Also removes hadron background from meson decay
- Isolation is measured as the energy in a cone (R=0.4) around the photon
 - Experimentally we remove the photon cluster
 - At particle level it is the sum of energy from all particles, except muons+neutrinos
 - At parton level it is the sum of energy from all coloured partons
- Event-by-event ambient energy is also subtracted from the cone
 - To remove UE+pile-up
- Example on right from 7TeV analysis
- Requirement in 8TeV analysis is E_T dependent:

 $E_{T}^{iso} < 4.8 GeV + 4.2 \times 10 - 3 \times E_{T}$

- Chosen to maintain high signal-to-background ratio
- Also avoids being too restrictive for NLO calculations

Slide

Photon identification

- Photons are reconstructed from EM calorimeter cells
 - Unconverted if no track, 1 and 2 track matching for converted
 - Right 960GeV photon candidate (2011 data)
 - Left MC example of a $\pi^{\,_0}$
 - Main background is from π^{0} 's in jets
 - Identify signal photons using shower shape variables
 - ID and isolation used in 2D sidebands to workout remaining pass tight cuts background

IcGill

Mark Stocktor

 π^{0}

- Identification efficiency in 8TeV data
 - Calculated with Pythia
 - ε_{ID}= simulated photons passing identification / particle level photons
 - Similar result for unfolding correction factor

Slide 8

- Unconverted photons highly efficient
- Drop in converted photons at higher E_{T} affects combined efficiency
 - Due to difficulties to separate the two closeby tracks from the conversion, which then fail the tighter single track requirements.

Systematics

- At high E_T the experimental uncertainty is mainly affected by the photon energy scale, but also a component from the photon ID efficiency At low E, there are two main sources;
- At low E_{T} there are two main sources:
 - The mixture of fragmentation/direct photons in the MC samples with the uncertainty obtained from performing a fit to find an optimal mix.

McGill

Slide 9

After the selection the remaining background is removed by a 2D sidebands technique - the assumption of the correlation of the background (R_{bkg}) is tested in a control region

Results - JetPhox

Slide 10 Mark Stockton

- Results are compared to Jetphox NLO predictions direct+fragmentation
 Scale uncertainty from varying the three scales by 2 around the nominal
 - value (photon E_T), both simultaneously and independently
 - CT10 PDF +uncertainties used (others give similar results)
 - Uncertainty on α_s (0.118) by variation of ±0.002
 - Additional hadronisation plus UE correction factors uncertainties

Results - PeTeR

Slide 11 Mark Stockton

- PeTeR (NLO) includes the resummation of threshold logarithms
 - Based on JetPhox calculations
 - Use running $\alpha_{\rm EM}$ as part of the electroweak Sudakov corrections
- Theoretical uncertainty is reduced (by 20%) and the agreement is much better over the entire phase space
 - Confirms the importance of the need for higher order predictions

Results - LO

Pythia is used in the analysis for the background subtraction, photon ID efficiencies and unfolding of the central value

McGill

Slide 12

- Sherpa used for cross-checks/systematics
- Comparing their parton level predictions to the results:
 - Sherpa does well for most of the phase space
 - Pythia has a different shape at low ${\rm E}_{\rm T}$

Results - summary

W McGill

Slide 13 Mark Stockton

- The latest 8TeV measurement has the benefit of:
 - Uncertainties halved compared to previous ATLAS analyses
 - Covers the largest phase space to date
 - Compares to PeTeR providing better agreement in the normalisation of the cross section and also reduced uncertainties
- Will make this a useful constraint once included in a global fit

Summary

- 8TeV isolated inclusive photon results have been presented
 - Look forward to seeing the impact of adding into global fits soon
- Future:
 - ATLAS is working hard on many other PDF related topics
 - On both precision from run1 and the first run2 results
 - Coming soon will be new results from top, W, Z, high mass Drell Yan and jets

Slide 14

Mark Stockton

MCFM v Jetphox

Background

Slide 16 Mark Stockton