Cryogenic Safety - HSE Seminar

The numerical evaluation of the minimal outlet area of the safety valve in the pipelines of cryogenic installations

Ziemowit M Malecha, Maciej Chorowski and Jaroslaw Polinski

Department of Cryogenic, Aeronautic and Process Engineering Wroclaw University of Science and Technology, Poland

Motivation

- The flow of cold helium in pipes is a fundamental issue of any cryogenic installation
- Pipelines for helium transportation can reach lengths of hundreds of meters
- Emergency valves are among the most common safety devices located on the pipelines
- The proper selection of a size is a crucial part of the costs for the entire installation and its safe operation
- The size of the safety valve must be properly designed in order to avoid a dangerous pressure build-up
- The most commonly occurring dangerous situation is an undesired heat flux in the helium as a result of a broken insulation
- The heat flux can be intense and the build-up of the pressure in the pipe can be very rapid

Aim and Scope

- Numerical evaluation of the build-up of pressure and temperature in the pipe, as a consequence of a sudden and intense heat flux.
- Evaluation of the proper size of a safety valve (minimal outlet area) in order to avoid a rise in pressure above a safety limit.
- Evaluation of the proper size of an individual pipe in order to avoid overestimation and any unnecessary increase in cost.
- Usage of the open source CFD toolbox - OpenFOAM.

Motivation for 2D calculations

- Necessity to predict the dynamics of the pressure increase for each individual pipeline, and for the given heat flux - large number of calculations
- Zero dimensional analysis is limited and tends to be overestimated and is insufficient for the proper calculation of a size of a safety valve
-3D CFD analysis prohibitively long because each individual pipe is hundreds of meters long
- 2D calculations are orders of magnitude faster than their 3D originals Difficulty: transformation of 3D geometry to its 2D numerical representation
- Minimal mathematical model: to calculate the dynamics of cryogenics gases:

Navier-Stokes, ideal gas, additive mixing - Confirmed by comparison with experiment

Transformation of the 3D geometry to its 2D representation

- Long and thin geometry: flow is invariant in width direction, $\partial() / \partial z=0$

$$
V_{3 D}=V_{2 D} \quad Q_{3 D}=Q_{2 D}
$$

To preserve the flow and thermal similarities:

- The volume of the original pipeline and its numerical model are equal, $V_{3 D}=V_{2 D}$.
- The total heat delivered through the walls is the same for the original pipeline and the numerical model, $Q_{3 D}=Q_{2 D}$, where: $Q_{3 D}=q_{3 D} A_{3 D}$ and $Q_{2 D}=q_{2 D} A_{2 D}$.
- The cross-section of the emergency valves is the same for the original pipeline and its numerical model, $A_{\text {Ve } 3 D}=A_{\text {ve } 2 D}$.
- Numerical geometry has 3 dimensions (length, height and width).
- Area of the walls of the 3 D pipeline is not equal to the area of the walls of the 2 D computational domain. $A_{3 D} \neq A_{2 D}$.

Mathematical model and numerical implementation

OpenFOAM (Open Source Field Operation and Manipulation) CFD toolbox

- Effectively used in diverse and challenging applications
- Compared with analytical solutions and experimental data

SonicFOAM solves for a transient, trans-sonic/supersonic flow of a compressible gas:

- high speeds are expected
- the sudden opening of an emergency valve can cause the creation of a shock wave
- numerical schemes that can capture these features while avoiding spurious oscillations

Finite volume discretization and the PISO (Pressure Implicit with Splitting of Operators)

$$
\begin{array}{ll}
\frac{\partial \rho \boldsymbol{u}}{\partial t}+\nabla \cdot(\rho \boldsymbol{u} \boldsymbol{u})=-\nabla p+\nabla \cdot(\mu \nabla \boldsymbol{u}) & \boldsymbol{u}=(u, v, w) \\
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \boldsymbol{u})=0 & \rho=\frac{p}{r T} \\
\frac{\partial \rho e}{\partial t}+\nabla \cdot(\rho \boldsymbol{u} e)=\nabla \cdot\left(\frac{k}{C_{v}} \nabla e\right)+p \nabla \cdot \boldsymbol{u} & e=C_{v} T
\end{array}
$$

Computational example 1: Pipeline with one change of diameter

Solid line - predicted heat flux in case of insulation failure Dashed line - recalculated heat flux for the $1^{\text {st }}$ example Dash-dotted line - recalculated heat flux for the $2^{\text {nd }}$ example

The pipeline:

- Two sections: $L_{1}=355 \mathrm{~m}, d_{1}=72.1 \mathrm{~mm} \quad L_{2}=55 \mathrm{~m}, d_{2}=38.4 \mathrm{~mm}$
- The nominal pressure of the pipeline: 4 bar
- The maximum pressure allowed in the pipeline: 6 bar
- The emergency valves opens: 5 bar

Initial conditions:

- uniform pressure 5 bar
- two open emergency valves

Trail and error procedure to reach the desired flow condition: pressure below 6 bar

Pressure build-up in time for the pipeline equipped with emergency valves with minimal required diameters.

Left plot: the maximum pressure in time
Right plot: the average pressure in time

The minimal diameter of the emergency valves: $d_{v 1}=60.3 \mathrm{~mm}, d_{v 2}=32.1 \mathrm{~mm}$
Jet contraction effect included by reduction the useful diameter of the safety valve by 30%.

Shock wave

Time: 1.5 s

Change of the x component of velocity vector across the pipeline, at $x=30 m, u(x=30, y)$. Maximum velocity is $\approx 10 \mathrm{~m} / \mathrm{s}$.

Computational example 2: Pipeline with 2 changes of diameter

The pipeline:

- Three sections: $L_{1}=88 \mathrm{~m}, d_{1}=267 \mathrm{~mm}$
$L_{2}=255 \mathrm{~m}, d_{2}=214 \mathrm{~mm} \quad L_{3}=55 \mathrm{~m}, d_{3}=135 \mathrm{~mm}$

Initial conditions:

- uniform pressure 4 bar
- 2 open emergency valves
- The nominal pressure of the pipeline: 3 bar
- The maximum pressure allowed in the pipeline: 4.75 bar
- The emergency valves opens: 4 bar

Pressure build-up in time for the pipeline equipped with 2 emergency valves: $d_{v}=14 \mathrm{~mm}$

- pressure never rises above 4.75 bar
- Opposite to the previous case, the pressure remains high for a longer time (wide plateau).
- After $42 \mathrm{~s} \quad p_{\max }$ drops below 4.5 bar (not shown in the figure).

Conclusions

- Generic approach for the evaluation of sizes of pipelines and emergency valves of a cryogenic installation.
- Consistent transformation of 3D geometry into simplified numerical geometry, in order to solve the problem using the appropriate 2D mathematical model.
- 2D numerical calculations are much faster when compared to their 3D originals, and much more accurate and informative when compared to the zero- or one-dimensional model.
- The proposed transformation keeps the geometrical and flow similarities (preserving the characteristic numbers: Reynolds number, Peclet number, Grashof number).
- Tool to help with the design process of any cryogenic installation (main benefits: fast calculation time, geometrical flexibility, possibility to use more complex mathematical models).
- Possible cost reduction related to the overestimation of the sizes of the pipelines and safety valves.

> Wrocław University of Technology

