DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

QUANTIFICATION OF HEAT FLUX IN SUPERCRITICAL HELIUM

Prepared by E.ERCOLANI A.GAUTHIER P.GULLY JM.PONCET

Presented by E.ERCOLANI

Safety seminar CERN 21-23 th September 2016

DE LA RECHERCHE À L'INDUSTRI

EXPERIMENTAL APPARATUS AND PROCEDURE

Reservoir LHe without MLI

Reservoir LHe with MLI

Poster presented at Aussois conference 2012

Super critical discharge pressure

Test parameters:

- Initial mass inventory of the reservoir
- Nature of the gas responsible (GN₂, GHe, Air) for the loss of vacuum
- Number of layers of MLI

$\frac{1}{1} \frac{1}{1} \frac{1}$

Isochoric pressure rise First thermodynamic law: $\Delta U = \Delta Q + \Delta W$ $\varphi = \rho_i \times \frac{V}{S} \times \frac{\Delta U}{\Delta t}$ $\Delta U = U(P_f, \rho_i) - U(P_i, \rho_i)$

- φ heat flux in W/m2
- ho_i initial density
- V volume of the tank
- S surface of the tank
- ΔU internal energy variation between a final and an initial time
- Δt variation of time
- P_f , P_i pressure at final and initial time

QUALIFICATION: FIRST TANK AT IMPOSED POWER

A first tank with electrical heaters has been used to qualify the instrumentation and the analysis method

Gap: - a part of the initial mass goes to the dead volumes (0.5l)

- heat accumulation on the wall tank can not be determined precisely (response time for the temperature sensors)

PRESSURE RISE OF THE RESERVOIR AND VACUUM VESSEL WITH GN₂

E.ERCOLANI Safety seminar CERN 21-23 th September 2016

| PAGE 5

DE LA RECHERCHE À L'INDUSTRI

HEAT FLUX RECEIVED BY THE LIQUID

- Peak of heat flux at the first moments < 1s: nucleate and film boiling inside the tank
- After the heat flux remains constant: free convection inside the tank

HEAT FLUX RECEIVED BY THE LIQUID

- Delay of peak nucleate/film boiling in comparison with the pressure at the first moments (Be careful with a safety device calculated at pressure close to 3 bars...)
- Constant heat flux 1.85 W/cm², steady state outside the tank? no variation of the thickness film condensation, free convection inside the tank.
 E.ERCOLANI Safety seminar CERN 21-23 th September 2016

ESTIMATION OF THE AVERAGE TRANSFER COEFFICIENTS

- Heat flux limited by free convection inside the tank
- High condensation coefficient because super heated gas, strong interfacial friction between the vapor and the liquid film, turbulent flow were low film thickness (0.025mm)

GHe

heat flux: 0.15 W/cm², the heat flux is limited by free convection inside the vacuum vessel (h = 30 W/m².K to compare to 6200 W/m².K by condensation)

□ AIR (one test)

heat flux: 2 W/cm², close to the value obtained with GN₂

HEAT FLUX WITH MUTI LAYER INSULATION

- Currently, no reproducible values have been obtained, we have to continue to work on this point...
- □ The value depends <u>strongly</u> on the way to install MLI on the reservoir !
- Question: is it relevant to measure /give some values.....?
 (way to install the MLI, types of MLI....)

Reservoir LHe with MLI

PAST RESULTS OF A BRUTAL LOSS OF VACCUM WITH GN₂, HEAT FLUX FOR AN UNINSULATED HE RESERVOIR

Experimentators	Intial conditions		Final conditions		Geometry tank	Filling rate	Heat Flux
Lehman 1980	1bar	4.2K	1bar	4.2K	Ø=0.3m L=1m 70 liters	50%	3.8 W/cm ²
Harrison 2001	23mbar	1.9K	11bar	6K	Ø=0.2m L=0.4m 12 liters	90%	3W/cm ²
Van Sciver 2015	1bar	4.2K	1bar	4.2K	Not mentioned	Not mentioned	2.5W/cm ²

- Difference between Lehman and Van Sciver in sub-critical condition
- Difference between Harrison and CEA in super-critical condition

Different designs cryostat, different geometry of reservoirs and different analysis methods may lead to different results... BE CAREFUL

- A heat flux of 1.85 W/cm² has been measured with <u>our facility in super</u> critical condition with a brutal loss of vacuum (GN₂).
 Value to compare with Harrison (3W/cm²).....
- Heat flux is limited by the free convection coefficient inside the tank (except for GHe break of vacuum)

□ Future work:

- Heat flux with MLI.....
- It will be interesting to compare the heat transfer condensation coefficient with bibliographic correlations.