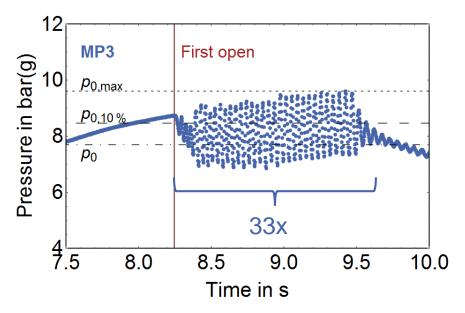


Investigation of Two-Phase Flow in Cryogenic Pressure Relief Devices

C. Weber, C. Heidt, A. Henriques, S. Grohmann

Cryogenic Safety HSE Seminar, 22nd September 2016, CERN

Institute of Technical Physics (ITEP) Institute of Technical Thermodynamics and Refrigeration (ITTK) Conseil Européen pour la Recherche Nucléaire (CERN)



Motivation

Cryogenic safety test facility: PICARD

- Spring-loaded safety valve
- Chattering during all experiments
 - Reduced discharge capacity
 - Possible damage of the seat

- R&D collaboration KIT CERN
- Thermodynamic process path and states during relieving
- Sizing of a safety valve for two-phase flow
- Conclusion and Outlook

R&D COLLABORATION

3 22.09.2016

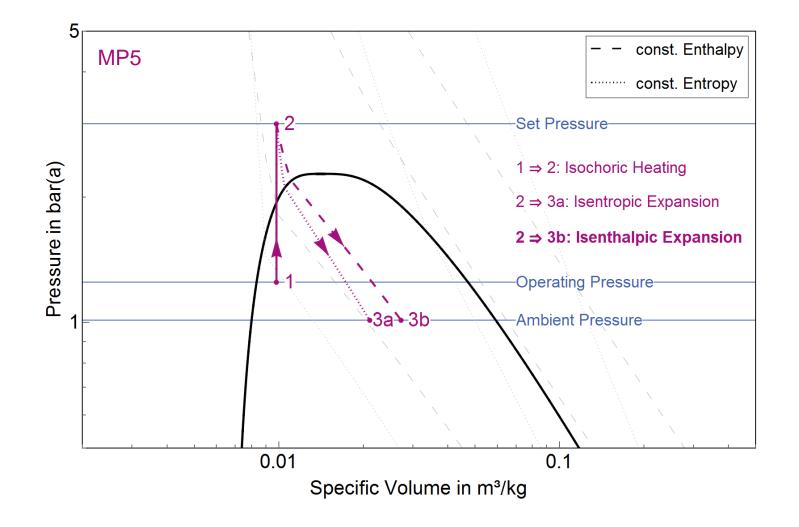
C. Weber et al. - Investigation of Two-Phase Flow in Cryogenic Pressure Relief Devices

R&D Collaboration KIT - CERN [1]

- Measurement of heat flux densities and relief flow rates after breaking insulating vacuum
 - Without multilayer insulation (MLI)
 - With MLI
 - With the relief point close to the critical point (EN 13648-3)
- Expansion in the two-phase area
 - Measurement of relief flow rates
 - Theoretical two-phase flow models for cryogenic conditions
 - Actual flow coefficients

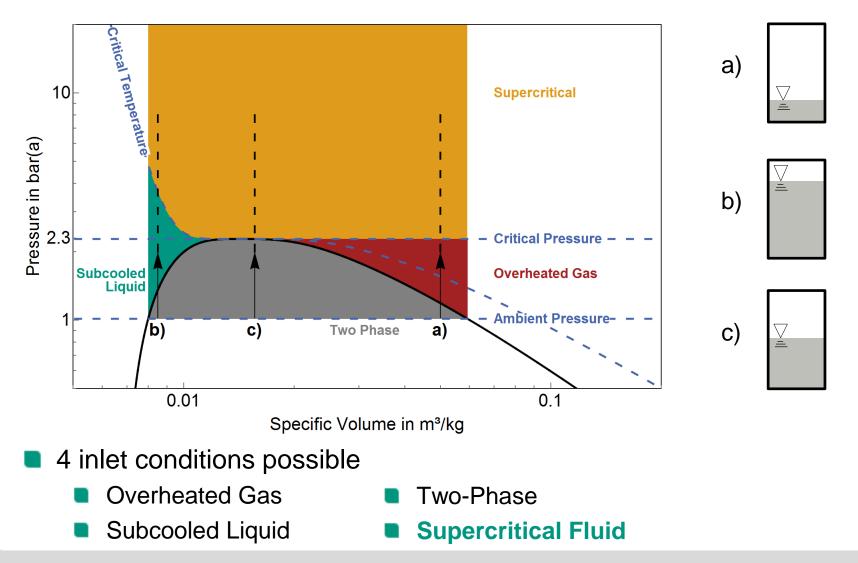
[1] Collaborative R&D on experimental testing on cryogenic pressure relief between CERN and KIT, KE2974/KT/DGS/222C, 12/2015

22.09.2016

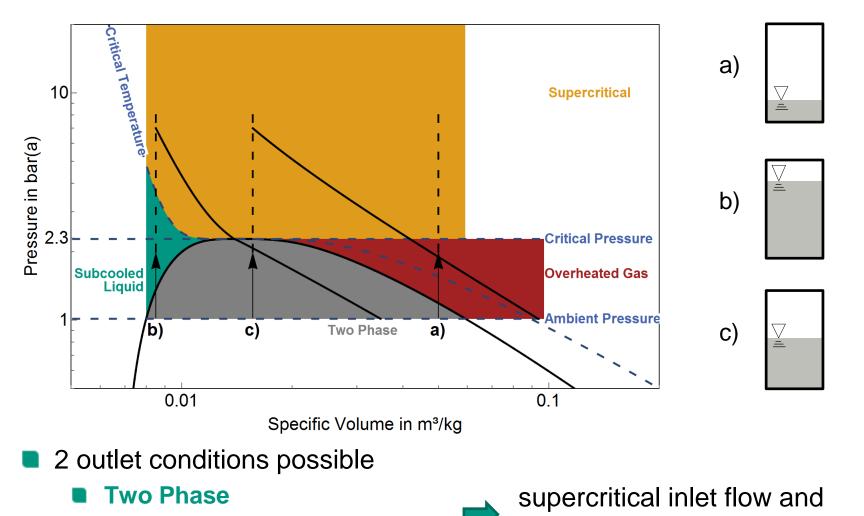


PROCESS PATH DURING RELIEVING

5 22.09.2016


Process Path

Inlet Conditions



7 22.09.2016

C. Weber et al. - Investigation of Two-Phase Flow in Cryogenic Pressure Relief Devices

Outlet Conditions

Overheated Gas

e Institute of Technical Physics Institute of Technical Thermodynamics and Refrigeration

expansion into two phase region

8 22.09.2016

C. Weber et al. - Investigation of Two-Phase Flow in Cryogenic Pressure Relief Devices

SIZING FOR TWO-PHASE FLOW

Sizing of Safety Valves

Area safety valve [1,2]: A

$$= \frac{m_{id}}{\kappa_{di} \Psi} \sqrt{2 \cdot p_0}$$

- **P** $_0, V_0$: Inlet conditions
- *m*_{id}: Ideal discharge mass flow [3]
- Ψ : Discharge function
- *K*_{dr}: Discharge coefficient

ISO 4126-7, Safety devices for protection against excessive overpressure - Part 7 Common Data, 2013 [German Version].
 AD 2000-A2, Sicherheitseinrichtungen gegen Drucküberschreitung – Sicherheitsventile –.
 DIN EN 13648-3, Cryogenic vessels – Safety devices for protection against excessive pressure.

C. Weber et al. - Investigation of Two-Phase Flow in Cryogenic Pressure Relief Devices

Karlsruhe Institute of Technology

Discharge Function ${\boldsymbol {\mathcal V}}$

- Single-phase [1]: $\Psi_{1ph} = f(\kappa)$
- Two-phase [4,5]: $\Psi_{2ph} = f(\omega)$ ω : compressibility factor
- API 520 [4]:
 - Using homogeneous equilibrium model
 - $\omega = f(\text{inlet conditions})$
- **ISO 4126-10 [5]**:
 - Using homogeneous non-equilibrium model
 - No supercritical inlet considered

• Only valid for:
$$p_{\rm r} = \frac{p_{\rm max}}{p_{\rm crit}} \le 0.5$$

[1] ISO 4126-7, Safety devices for protection against excessive overpressure - Part 7 Common Data, 2013 [German Version].

[4] API Standard 520, Sizing, Selection, and Installation of Pressure-Relieving Devices, 2014.

[5] ISO 4126-10, Safety devices for protection against excessive overpressure - Part 7 Sizing of safety valves for gas/liquid two phase flow, 2010.

Sizing of Safety Valves

Area safety valve [1,2]:

$$A = \frac{m_{id} \sqrt{v_0}}{\kappa_{dr} \Psi \sqrt{2 \cdot p_0}}$$

- **\rho_0, v_0: Inlet conditions**
- *m*_{id}: Ideal discharge mass flow [3]
- Ψ : Discharge function
- *K*_{dr}: Discharge coefficient

ISO 4126-7, Safety devices for protection against excessive overpressure - Part 7 Common Data, 2013 [German Version].
 AD 2000-A2, Sicherheitseinrichtungen gegen Drucküberschreitung – Sicherheitsventile –.
 DIN EN 13648-3, Cryogenic vessels – Safety devices for protection against excessive pressure.

C. Weber et al. - Investigation of Two-Phase Flow in Cryogenic Pressure Relief Devices

Discharge Coefficient K_{dr}

Definition:
$$K_{dr} = \frac{m}{\dot{m}_{id}}$$

- Experiment: PICARD
- Theory: Different models based on
 a) Thermodynamics: K_{dr} = f(p₀, x₀) [5,6]
 b) Fluiddynamics: K_{dr} = f(η_{crit}) [7,8]

[5] LEUNG, J.C. A theory on the discharge coefficient for safety relief valve. *Journal of Loss Prevention in the Process Industries*, 2004, **17**(4), 301-313.
[6] LENZING, T. et. al. Prediction of the maximum full lift safety valve two-phase flow capacity [online]. *Journal of Loss Prevention in the Process Industries*, 1998, **11**(5), 307-321.
[7] DARBY, R. On two-phase frozen and flashing flows in safety relief values [online]. *Journal of Loss Prevention in the Process Industries*, 2004, **17**(4), 255-259.
[8] SALLET, D.W. Thermal Hydraulics of Valves for Nuclear Application. *NUCLEAR SCIENCE AND ENGINEERING*, 1984, 220-244.

Discharge Coefficient K_{dr}

Exemplary sizing with API [4] calulation:

<i>K</i> _{dr} -Method	<i>K</i> _{dr} / -	<i>d</i> i / mm	A _{2ph} / A _g	
API [4]	0.85	40.9	0.99	
Leung [5]	0.67	46.1	1.26	
Lenzing [6]	0.56	50.2	1.50) a)
Darby [7]	0.70	45.0	1.20	λ b)
Sallet [8]	0.65	46.8	1.30	⁽⁰ ک

a) Thermodynamic models

b) Fluiddynamic models

Further investigation needed

[4] API Standard 520, Sizing, Selection, and Installation of Pressure-Relieving Devices, 2014.

[5] LEUNG, J.C. A theory on the discharge coefficient for safety relief valve. Journal of Loss Prevention in the Process Industries, 2004, 17(4), 301-313.

[6] LENZING, T. et. al. Prediction of the maximum full lift safety valve two-phase flow capacity [online]. Journal of Loss Prevention in the Process Industries, 1998, 11(5), 307-321.

[7] DARBY, R. On two-phase frozen and flashing flows in safety relief values [online]. Journal of Loss Prevention in the Process Industries, 2004, 17(4), 255-259.

[8] SALLET, D.W. Thermal Hydraulics of Valves for Nuclear Application. NUCLEAR SCIENCE AND ENGINEERING, 1984, 220-244.

14 22.09.2016

CONCLUSION & OUTLOOK

15 22.09.2016

C. Weber et al. - Investigation of Two-Phase Flow in Cryogenic Pressure Relief Devices

Conclusion & Outlook

- No validated helium two phase flow model available in literature
- Approaches:
 - Validate API calculation
 - Measurement of K_{dr}
 - Calculate supercritical speed of sound
 - Consider nucleation during expansion
 - Investigate pressure oscillations

Diversional Action Acti

- Already done:
 - Proximity and temperature sensor installed
- Planned
 - Pressure and temperature sensors up- and downstream of the safety valve
 - Buffer volume upstream safety valve

C. Weber et al. - Investigation of Two-Phase Flow in Cryogenic Pressure Relief Devices

Institute of Technical Physics Institute of Technical Thermodynamics and Refrigeration

Thank you for your attention.

