Thomas Otto, Departmental Safety Officer, Technology Department, CERN

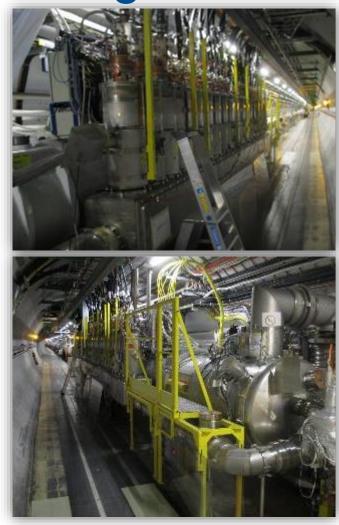
Cryogenic Risk Assessment in LHC

Helium spill risk in LHC

Pressure Tests not performed	
Temperature between 300 K and 80 K	Spill rate 1 kg s ⁻¹
Powering Phase 2 (full magnetic field)	
Powering Phase 1 (standby, hardware tests)	Spill rate 320 g s ⁻¹
Residual risk during Technical Stops and Shut-Downs	A spill of 100 g s ⁻¹ may occur, if sensitive cryogenic equipment is damaged

Helium Spill WG Recommendation

- Once T < 80 K, access to LHC tunnel only at stable temperature and with zero current in the main magnets
 - Remaining risk of He spill is human error on sensitive instrumentation and DFBs


Helium pressure gauge

Memo of the Complex Manager

Since Autumn 2014:

- Activities in the vicinity of cryogenic equipment need to be authorised by the Complex Manager when T < 80 K
- For recurrent activities (piquet, "best effort"),
 Work Frame authorisations can be given
 - Two "He-spill" Safety Officers are preparing the risk assessments

DFBA

LHC Tunnel

Thomas Otto, TE DSO

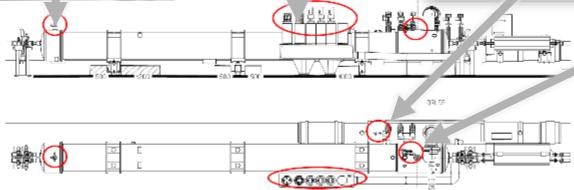
Exempted Activities

BE Dept.	BE-BI BPM electronics	Servicing front-end crates, electronics cards, fibres or cables of the LHC BPM system
DGS Unit	DGS-RP Survey	Assessment of radiological risks at the worksite from the transport zone of the tunnel.
	DGS-SEE Inspections	Safety inspections, tests of Level-3 alarms and accident analysis.
EN Dept	EN-HE Transport	Transport of equipment and spares in the LHC tunnel and to the RRs and REs. Transport of the Tomograph.
	EN-MEF Geometry and Alignment	Geometric measurements of the position of accelerator equipment, alignment of equipment in long straight sections.
	EN-MEF Small Works	All interventions of the Small Works team in the SI section which have been screened by the Safety Coordinators and which are not in the vicinity of sensitive cryogenic instrumentation.
GS Dept.	GS-ASE Alarms Test and maintenance of Fire Detection and Evacuation Systems, Flammable Gas and ODH Detection Systems, Red Telephones, CERN Safety Alarm Monitoring (CSAM))	
TE Dept.	TE-ABT Injection	Activities on Injection systems
	TE-ABT LBDS	Activities on LHC Beam Dump System in P6
	TE-ABT MKQ	Activities on MKQ magnets in P4
	TE-EPC Piquet	Interventions on the 60 A supplies, placed under the magnets and accessible from the transport zone and on equipment in the RRs

Sensitive Locations for He-spill

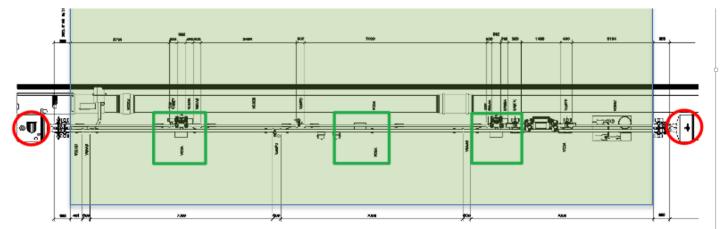
Multivalve port

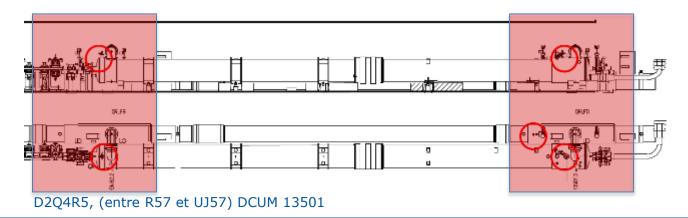
Direct Current Feedbox (DFB)

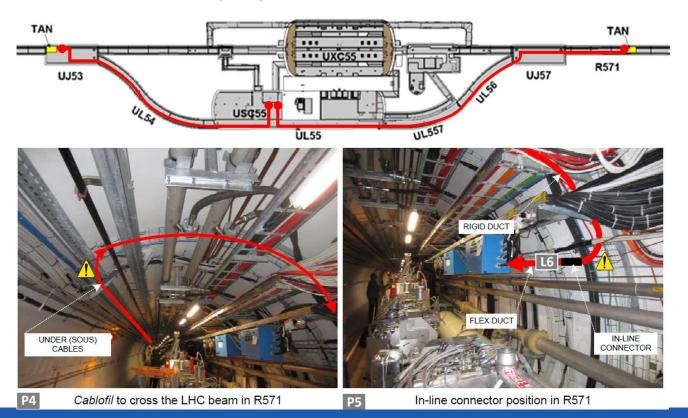

gauge

He pressure

Vac instrumentation


ports




Definition of Go / No-Go areas

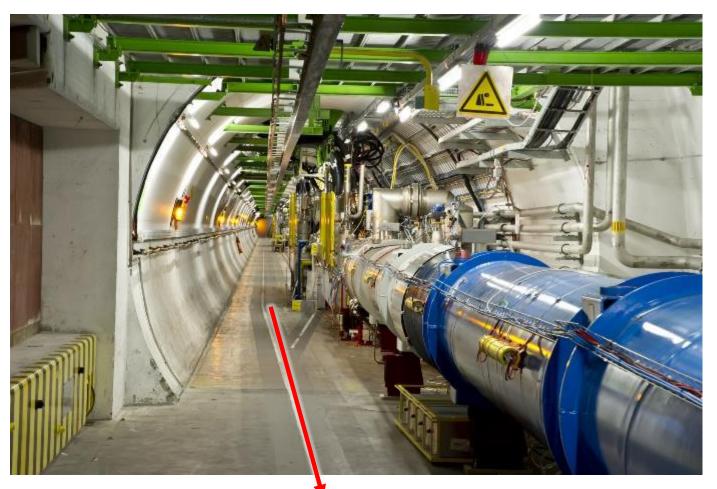
 Detailed access instructions, avoiding sensitive equipment

Thomas Otto, TE DSO

- Information of personnel
 - Helium Spill hazards are identified during the risk assessment with the works supervisors
 - Works supervisor informs and instructs in turn personnel under his responsibility

- Emptying sensitive equipment from IHe
 - Direct Current Feedboxes
 - RF cavities
 - ... Inner Triplet Magnets (see later)

- Identify activities in LHC tunnel
- Activities in transport zone alone are exempted
- Activities around DFBs and on QRL-side of cryostat / beam line require authorisation
- 4. Risk Analysis by HE-spill SO and requestor, based on documented procedures
 - RA checked by Hierarchy
 - RA submitted to Complex Manager
 - Approval by electronic signature



Work Frame Authorisations

	BE-BI BGV	Installation of BGV detector
BE		BGI Cameras;
	BE-BI-BL Activities	BLM Installation and Maintenance;
		BWS Servicing
	BE-BI-PI Activities	BCTDC Maintenance
	BE-BI-PM Activities	BRAN Maintenance;
		BTV Electronics;
		BSRT Service
	BE-BI-QP Activities	BPM Collimator Connection;
		BPM Test;
		Tune Test;
		WCT Installation
	BE-CO-FE WorldFIP	Repair of connection faults in WorldFIP TAP boxes or repeaters
	BE-OP Patrol	Patrol of the access control system (*includes IT areas)
DGS	DGS-RP RAMSES	Servicing of radiation monitors
EN	EN-EL-OP	Piquet Service
	EN-MEF-MM	Radiographie Industrielle
Ш	TE-ABT-FPS	Work on MKI
	TE-CRG-OA	Piquet Service
	TE-MSC-SCD	Cabling activities
	TE-VSC-IV	Interventions on insulation vacuum

Inner Triplet Area

only one direction of escape

Thomas Otto, TE DSO

Inner Triplet Area

- Result of the Helium-spill WG :
- Access to the triplet areas at a temperature T < 80 K is forbidden
 - In well-justified cases, exceptions from the rule can be granted by the Complex Manager, with compensatory measures
 - Under which conditions are exceptions possible ?

"Well justified cases"

- Activities to take place in the cold IT areas must be related to, in order of importance
 - 1. Personal Safety (e.g. the BE-OP patrol)
 - 2. Equipment Safety (e.g. BLMs monitoring the triplet quadrupoles)
 - By default, interventions should be scheduled for the next TS, where the triplets can be emptied
 - 1. Accelerator availability
 - 2. Attaining nominal performance
 - 3. Performance enhancement

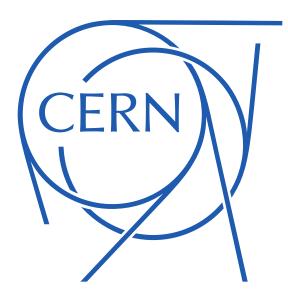
Inner Triplet Area Access Types

- Short access
 - The duration of the access is short (t < 10 min) AND
 - the workers remain in the transport zone AND
 - no work close to the cryostats ("Hands in pocket")
- No compensatory measures, authorisation by CM
- Long access
 - The access takes longer than 10 min OR
 - the activity involves manipulations other than in the transport zone (remote possibility to damage the cryostats / instrumentation)
- Compensatory measures and authorisation by CM

Compensatory measures

- For a long access to the IT Areas, the insulation vacuum of the triplets can be monitored with a pressure gauge attached to a visual/audible alarm.
- This is limited to max. ¹/₂ day interventions and subject to VSC manpower availability
- Another compensatory measure is to empty the triplet from liquid Helium (takes 2 times 7 hours).

Summary 1


- Helium Spill WG identified human error as largest risk factor for He spill once the LHC cryostats are cold and at stable T < 80 K
- Activities in sensitive areas are restricted
- (Work Frame) Authorisations are given by the Complex Manager after Risk Analysis of work procedures

Summary 2

- Access to IT areas remains forbidden.
- Well-justified exceptions in the interest of Safety and safe operation are possible
- Authorisation involves
 - Risk assessment
 - Compensatory measures, where required
 - The consent of the hierarchy
 - The signature of the Complex Manager
 - This procedure guaranties Safety and maintains operational flexibility.

