
Serialization Tests
Alexey Rybalchenko, GSI Darmstadt • 12.02.2016

Motivation

2

● Extend the previous serialization tests done with FairMQ with potentially more efficient
approaches.

● Evaluate how can the framework make best use them, either for internal use (protocol) or user
side. E.g.: preallocating data buffer (filled by user), or taking the one provided by the user.

● Evaluate their features and performance - encoding/decoding and transferring of binary blobs.

motivation example topology flatbuffers messagepack performance summary

Examples in FairRoot (1/2)

3

Simple topology for the digitization->reconstruction step of FairRoot Test Detector example.

Contains data format tests for:

● boost::serialization

● Google Protocol Buffers

● ROOT TMessage

● raw binary transfer (with some manual copying to create contiguous objects)

Extend it for:

● MessagePack

● Google FlatBuffers

sampler

processor

processor

sink

motivation example topology flatbuffers messagepack performance summary

Examples in FairRoot (2/2)

4

● Sampler sends arrays of Digis (created by
digitization task).

● Processor uses the Digi data for (very simple)
reconstruction that produces Hits. Sends arrays
of Hits

● Sink receives hits and writes them to a file in
Root format.

● Sink sends confirmations of received messages
back to sampler for measuring the overall
performance.

sampler

processor

processor

sinksend Digis send Hits

Reconstruct Hits from Digis

Reconstruct Hits from Digis

Acknowledge each received Message

Messages: arrays of ~25-40 Digis or Hits.
Digi: { 3 x int, 2 x double }
Hit: { 2 x int, 8 x double }

motivation example topology flatbuffers messagepack performance summary

Schema example:

Google FlatBuffers

5

Notable FlatBuffers features:

● Access to serialized data without parsing/unpacking.

● The entire buffer is allocated at the beginning.

● Random access and simple mutability (receive -> modify -> send without copying).

● Fixed schema definition (generates accessors code).

● Schema evolution.

● Nesting.

● Optional fields (do not take up space in the buffer) & Default values.

● C++, C#, Go, Java, JS, PHP, and Python, more coming (but with varying feature set).

namespace TestDetectorFlat;

table Digi {
 x:int;
 y:int;
 z:int;
 timestamp:double;
 timestampError:double;
}

table DigiPayload {
 digis:[Digi];
 buffer:[ubyte];
}

root_type DigiPayload;

Latest release: 1.3 (2016-02-03)

motivation example topology flatbuffers messagepack performance summary

MessagePack

6

Notable MessagePack features:

● The C++ interface supports referencing buffer in addition to the simple copying buffer. This produces a scatter buffer in
a zero-copy way. Msgpack examples and tests then copy the data into a simple buffer.

● Support for streaming.

● Can serialize user types (requires adding special macros to the classes).

● No schema definition necessary.

● Supports over 50 languages (but with varying feature set).

Latest release: 1.4 (2016-01-22)

motivation example topology flatbuffers messagepack performance summary

Performance without attachment

7Hardware: Intel Xeon E5-1607 v3 (4 cores), 8GB RAM

example topology (see prev. slides): (De-)serializing & transferring data, running trivial processing task on the Processor

Messages:
arrays of ~25-40

Digis or Hits.
Digi: { 3 x int, 2 x double }
Hit: { 2 x int, 8 x double }

motivation example topology flatbuffers messagepack performance summary

Performance with binary blob attachment

8Hardware: Intel Xeon E5-1607 v3 (4 cores), 8GB RAM

Messages:
serialized arrays of

~25-40 Digis or Hits.
Digi: { 3 x int, 2 x double }
Hit: { 2 x int, 8 x double }

+
a binary blob attachment

of a specified size
bi

n
ar

y
bl

ob
 s

iz
e

Number of messages:
50 GB / blob size

multipart available in
ZeroMQ transport.
nanomsg has very

limited scatter buffers as
alternative.

motivation example topology flatbuffers messagepack performance summary

Message sizes

9Hardware: Intel Xeon E5-1607 v3 (4 cores), 8GB RAM

motivation example topology flatbuffers messagepack performance summary

Summary

10

schema random
access mutability “zero-copy” encoding user

defined types ... links

boost no no no no
yes, with or without
modification of the

classes
www.boost.org/doc/libs/release/libs/serialization/

msgpack no no no yes, producing
scatter buffer

yes, with small
modification of the

classes
msgpack.org

protobuf yes, very
flexible no yes no only manually developers.google.com/protocol-buffers

flatbuffers yes, very
flexible yes yes, limited

skipping
encode/decode

step
only manually google.github.io/flatbuffers/index.html

https://github.com/rbx/FairRoot/tree/bigger-buffer/examples/advanced/Tutorial3/MQ

motivation example topology flatbuffers messagepack performance summary

