Serialization Tests

Alexey Rybalchenko, GSI Darmstadt « 12.02.2016

motivation

Motivation

e Extend the previous serialization tests done with FairMQ with potentially more efficient
approaches.

e Evaluate how can the framework make best use them, either for internal use (protocol) or user
side. E.g.: preallocating data buffer (filled by user), or taking the one provided by the user.

e Evaluate their features and performance - encoding/decoding and transferring of binary blobs.

example topology

Examples in FairRoot (1/2)

Simple topology for the digitization->reconstruction step of FairRoot Test Detector example.

processor
Contains data format tests for:

e boost:serialization sampler

e Google Protocol Buffers
processor
e ROOT TMessage

e raw binary transfer (with some manual copying to create contiguous objects)

Extend it for:

e MessagePack

e Google FlatBuffers 3

example topology

Examples in FairRoot (2/2)

Messages: arrays of ~25-40 Digis or Hits.
Digi: { 3 x int, 2 x double }
Hit: { 2 x int, 8 x double }

Reconstruct Hits from Digis

e Sampler sends arrays of Digis (created by
digitization task). processor

e Processor uses the Digi data for (very simple)
reconstruction that produces Hits. Sends arrays sampler send Digis
of Hits

send Hits

e Sink receives hits and writes them to a file in

processor
Root format.

Reconstruct Hits from Digis
e Sink sends confirmations of received messages

back to sampler for measuring the overall
performance.

Acknowledge each received Message

flatbuffers

Google FlatBuffers

Notable FlatBuffers features: Schema example:

e Access to serialized data without parsing/unpacking. namespace TestDetectorFlat;

) . o table Digi {

e The entire buffer is allocated at the beginning. x:int;
y:int;

e Random access and simple mutability (receive -> modify -> send without copying). zint;

timestamp:double;

. .. timestampError:double;
e Fixed schema definition (generates accessors code). P

}
e Schema evolution. table DigiPayload {
digis:[Digil;
e Nesting. }buffer:[ubyte];

e Optional fields (do not take up space in the buffer) & Default values. root_type DigiPayload;

o (++ (C#, Go,Java, JS, PHP, and Python, more coming (but with varying feature set).

Latest release: 1.3 (2016-02-03)

messagepack

MessagePack

Notable MessagePack features:

e The C++ interface supports referencing buffer in addition to the simple copying buffer. This produces a scatter buffer in
a zero-copy way. Msgpack examples and tests then copy the data into a simple buffer.

e Support for streaming.
e (an serialize user types (requires adding special macros to the classes).
e No schema definition necessary.

e Supports over 50 languages (but with varying feature set).

Latest release: 1.4 (2016-01-22)

performance

Performance without attachment

example topology (see prev. slides): (De-)serializing & transferring data, running trivial processing task on the Processor

Processing time for 500k events (without attachment)

Messages:

arrays of ~25-40 manual binary

Digis or Hits.
Digi: { 3 x int, 2 x double }
Hit: { 2 x int, 8 x double }

boost::seralization

Protocol Buffers
FlatBuffers
MessagePack

ROOT TMessage
0 30 60 g0 120

seconds

Hardware: Intel Xeon E5-1607 v3 (4 cores), 8GB RAM J

performance

Performance with binary blob attachment

Messages:
serialized arrays of Bl manual
~25-40 Digis or Hits. B manual (multipart)
Digi: { 3 x int, 2 x double } 100KB e arialirati
it (2 xint, 8 x docble] I boost:serialization
+ B Frotocol Buffers
a binary blob attachment Il FlatBuffers

of a specified size
TMB Il FlatBuffers (empty)

I MessagePack

20MB

Number of messages:
50 GB / blob size

binary blob size

multipart available in
ZeroMQ transport. 0 40 80 120 160

nanomsg has very
limited scatter buffers as
alternative.

seconds

Hardware: Intel Xeon E5-1607 v3 (4 cores), 8GB RAM

performance

Message sizes

Message sizes (array of Digi/Hit, 30 Elements)

Bl Digis

manual binary B Hits
boost:serialization
Protocol Buffers
FlatBuffers
MessagePack
ROOT Thessage

0 12560 2500 3750 5000

bytes

Hardware: Intel Xeon E5-1607 v3 (4 cores), 8GB RAM ?

Summary

schema

msgpack

yes, very

protobuf I

yes, very

flatbuffers flexible

random

mutability
access

“zero-copy”

encoding user
defined types

yes, with or without
modification of the
classes

yes, producing
scatter buffer

yes, with small
modification of the
classes

only manually

yes, limited

skipping
encode/decode
step

only manually

summary

www.boost.org/doc/libs/release/libs/serialization/

msgpack.org

developers.google.com/protocol-buffers

google.github.io/flatbuffers/index.html

https://github.com/rbx/FairRoot/tree/bigger-buffer/examples/advanced/Tutorial3/MQ

