A Large Ion Collider Experiment

ΠП

DISCHARGE STUDIES WITH SINGLE- AND MULTI-GEM STRUCTURES IN A SCOPE OF THE ALICE TPC UPGRADE

Piotr Gasik (Technische Universität München) for the ALICE TPC Collaboration

> RD51 Collaboration meeting 8-11.02.2016 CERN

OUTLINE

- 1) Motivation for discharge studies
- 2) Stability of ALICE GEM TPC baseline solution R&D
- 3) Discharge probability in GEM detectors R&D
- 4) Propagation probability R&D
- 5) Summary and Outlook

ALICE TPC UPGRADE

ALICE TPC UPGRADE FOR RUN 3

Requirements for GEM readout:

- Operate at the gain of 2000 in Ne-CO₂-N₂ •
- IBF < 1% at Gain = 2000 $\rightarrow \epsilon$ = 20
- Local energy resolution < 12% for ⁵⁵Fe ٠
- Stable operation under LHC conditions

GEM-based readout chamber

- Low ion backflow
- High rate capability
- No ion tail •
- Continuous readout possible

electrons

BASELINE SOLUTION: 4-GEM SETUP

The set of the set of

- Requirements not fullfilled with a standard 3-GEM configuration
- New readout chambers employ standard (S) and large-pitch (LP) GEMs in a configuration S-LP-LP-S
- Optimized HV settings

HV SETTINGS OPTIMIZATION

Baseline solution (S-LP-LP-S) performance: IBF = 0.6-0.7 %

 $σ_{E}$ /E ≈ 12 % for 5.9 keV (⁵⁵Fe)

- "Standard" HV settings used with (e.g. COMPASS) not optimal for low IBF
 - $\Delta_{\text{GEM1}} > \Delta_{\text{GEM2}} > \Delta_{\text{GEM3}}$

(largest amplification in GEM1 \rightarrow stability)

- IBF optimized settings:
 - $\Delta_{\text{GEM1}} > \Delta_{\text{GEM2}} \approx \Delta_{\text{GEM3}} << \Delta_{\text{GEM4}}$
 - High E_{T1}, E_{T2}
 - Low E_{T3}

(largest amplification in GEM4)

(high electron extraction from the first GEM stages) (ion blocking) $$^{\rm 6}$$

STABILITY STUDIES OF THE BASELINE 4-GEM SOLUTION

DISCHARGE STUDIES WITH ALPHA PARTICLES Baseline HV solution for the ALICE Upgrade

- Different HV settings have been tested with a 3-GEM configuration
- "<u>Standard</u>" → "<u>IBF</u>"
 - Standard optimized for stability (COMPASS)
 - IBF → optimized for IBF (ALICE)
- Significant drop of stability while using IBF

settings with a typical 3-GEM configuration

• **4-GEM configuration,** optimized for energy resolution and IBF is also stable against electrical discharges

	S-S-S 'standard' HV G = 2000	S-S-S-S IB = 2.0% G = 2000	IB = 0.34% G = 1600	S-LP-L IB = 0.34% G = 3000	P-S IB = 0.34% G = 5000	IB = 0.63% G = 2000
$E_{\alpha} = 6.4 \text{ MeV}$ $rate = 0.2 \text{ Hz}$	~10 ⁻¹⁰	2000		<2×10 ⁻⁶	<7.6×10 ⁻⁷	
241 Am E _{α} = 5.5 MeV rate = 11 kHz					(< 1.5×10 ⁻¹⁰
239 Pu+ 241 Am+ 244 Cm E _{α} = 5.2+5.5+5.8 MeV rate = 600 Hz		$< 2.7 \times 10^{-9}$	$< 2.3 \times 10^{-9}$	$(3.1\pm0.8)\times10^{-8}$		< 3.1×10 ⁻⁹
90 Sr E _{β} < 2.3 MeV rate = 60 kHz					< 3×10 ⁻¹²	8

ALICE TPC Upgrade TDR Addendum, CERN (2015)

RATE CONSIDERATIONS FOR RUN 3

Typical yearly Pb-Pb run: 10⁶ s

Charged particle multiplicity: $\langle dN_{ch} / d\eta \rangle = 500$

Coverage of the TPC read-out plane: 1η unit

No. particles expected in the TPC at 50 kHz: $500 \times 2 \times 50000 \times 10^6 = 50 \times 10^{13}$

Background: ×2

Number of particles accumulated per stack (1 of 144): **7 × 10¹¹** per Pb-Pb year

STABILITY STUDIES AT SPS (RD51 BEAMTIME) with a full-size 4-GEM IROC prototype

150 GeV/c high intensity pion beam hitting Fe absorber: ~5×10¹¹ particles accumulated

Discharge probability measured: (6.4±3.7)×10⁻¹² per incoming hadron

All measured discharges were non destructive!

Performance similar to standard triple GEMs measured in similar conditions

(G. Bencivenni et al. NIM A 494 (2002) 156)

Estimate for RUN3:

- 650 discharges in the TPC per typical yearly Pb-Pb run
- 5 per stack
- Safe operation guaranteed

DISCHARGE PROBABILITY STUDIES - R&D WITH ALPHA PARTICLES -

EXPERIMENTAL SETUP

- 10x10 cm² GEMs
 - (140 um 240 um pitch, double-mask) (CERN, TECHTRA)
- Modular setup, no FC
- 1-4 GEM stacks
- Adjustable drift gap
- Current/discriminator readout
- Drift field: 400 V/cm (if not stated differently)

"Coin" mixed source

- ²³⁹Pu + ²⁴¹Am + ²⁴⁴Cm,
- 5.2 MeV + 5.5 MeV + 5.8 MeV
- A = 3 kBq (each)
- Rate = 500-600 Hz

Gaseous sources

- ²²⁰Rn
- 6.4 MeV
 - Rate = 0.5 15 Hz

EXPERIMENTAL SETUP

10x10 cm² GEMs

(140 um – 240 um pitch, double-mask) (CERN, TECHTRA)

- Modular setup, no FC
- 1-4 GEM stacks
- Adjustable drift gap
- Current/discriminator readout

"Coin" mixed source

- ²³⁹Pu + ²⁴¹Am + ²⁴⁴Cm,
- 5.2 MeV + 5.5 MeV + 5.8 MeV
- A = 3 kBq (each)
- Rate = 500-600 Hz

Gaseous sources

- ²²⁰Rn
- 6.4 MeV
- Rate = 0.5 15 Hz

DISCHARGE MEASUREMENTS

- <u>10 Mohm loading resistance on top side of GEM (if not stated differently)</u>
- <u>Resistor chain or independent channels HV supply</u>

-
$$P = N_{spark} / (t^*rate)$$

3GEM STUDIES

CROSS-CHECK WITH LITERATURE F. Sauli et al. NIM A 479 (2002) 294

- Low intensity ²²⁰Rn source (TUM)
- Standard HV settings;
- Gain measured with ⁵⁵Fe
- Fairly good agreement

FOR COMPARISON: CMS RESULTS

Courtesy of Jeremie Merlin, 16.06.2014, ALICE TPC Workshop

10x10 GEM reference measurements: discharge probability

→ HV power supply and pico-ammeter not fast/sensitive enough to detect all discharges

FOR COMPARISON: CMS RESULTS

Courtesy of Jeremie Merlin, 16.06.2014, ALICE TPC Workshop

10x10 GEM reference measurements: discharge probability

@Gain=6.10⁵ (3700V/740uA) : ΔV_{GEM1}= 416V ΔV_{GEM2}= 407V ΔV_{GEM2}= 389V

DEPENDENCE ON GAS MIXTURE 3-GEM, 220Rn source, Standard HV

- <u>Standard HV settings</u>;
 <u>Gain measured with ⁵⁵Fe</u>
- Measurement for TPC gas mixtures: Ar-CO₂ (90-10), Ne-CO₂ (90-10), Ne-CO₂-N₂ (90-10-5)
- Different slopes for Ar- and Ne-based mixtures.
- Clear influence of additional quencher
- Measurements at a very high gain
- Saturation effects?
- Not clear dependence towards lower gains
- Switch to high-rate source

FIRST RESULTS WITH HIGH RATE SOURCE

This led us to have a closer look at drift (field/gap) dependency ٠

DRIFT GAP SCANS WITH STANDARD SETTINGS

- Measurement performed with a mixed source fixed position and solid angle
- Discharge probability drops significantly after d>40 mm in Ar-CO2 and d>60 mm in Ne-CO₂-N₂
- Upper limit (no spark measured in a given time)
- See: Bragg curves
- ALCIE Stability studies with d_{source} in a plateau region

Track length [mm]

BRAGG CURVES FOR THE MIXED SOURCE

SIMPLE G4 SIMULATIONS

Simulations of > 4000 events from the mixed source ($E_D = 0$)

Plot number of electrons liberated at the given distance from the source, integrated over 10x10 cm²

Shape of discharge curves may already be explained with this simple geometrical studies

- Steep slope for Ar-, softer for Ne-
- Plateau

Still few inconsistencies to be understood and solved.

NEXT STEPS

Ongoing – more results soon!

Plot number of high ionization clusters as a function of drift gap; add drift and diffusion; 1GEM measurement!

Electron density maps (e⁻/mm²) for mixed source in Ar-CO₂ (90-10) for different distances between SRC and 10x10 cm² GEM. $E_D = 0$

DISCHARGE PROBABILITY VS. DRIFT FIELD

 \leftarrow Measurement in Ar-CO₂ (90-10) with 9.5 mm drift gap.

Gain = 30000 (⁵⁵Fe); standard HV settings

Dependence of discharge probability on a drift field E_D

- gas properties (drift velocity, diffusion)
- Primary electron recombination at low E_D
- Attachment
- Others?

Non-zero probability for $E_D = 0$

All R&D with $E_D = 400$ V/cm (ALICE)

FIELD SCAN WITH HIGH RATE SOURCE

- Standard, Reversed, Low E_{T2}, "IBF"
- Comparison at G=5000-6000, <u>drift gap: 40 mm</u>; gas: Ar-CO₂ (90-10)
- Results → similar to ²²⁰Rn; significant increase of probability toward IBF settings
- Focusing effect of low ET₂ enhances discharge probability?

DRIFT GAP SCAN FOR DIFFERENT SETTINGS

- Gas: Ar-CO₂ (90-10)
- Influence of high charge deposition still visible
- Drop of probability at d > range less steep (at least for IBF settings)

- influence of IBF settings, reversed amplification order, low ET₂

1GEM STUDIES

DISCHARGE PROBABILITY FOR DIFFERENT GAS MIXTURES

- Ne-CO2 (90-10) more stable than Ar-CO2 (90-30)
- high charge density at a single GEM hole
 - consider Bragg peaks
- In principle, discharge curves follow the hypothesis of charge density
- Additional factors (e.g. gas properties: drift velocity, diffusion for a given E_D) may influence the final numbers
 - May be more significant in multi-GEM structures

E_D AND E_{IND} CONSIDERATION (Ne-CO₂-N₂)

- Slight dependence on E_D (drift, diffusion)
- P≠0 also for $E_D < 0 \rightarrow$ high ionization close to a GEM hole
- No dependence on E_I

- Comparison of discharge curves (220Rn source) for Standard (140 um) and Large Pitch (280 um) foils
- Different detector (42 mm drift, field cage)
- Different foils \rightarrow nice agreement with previous 1GEM measurement
- No significant difference between S and LP → for higher gains discharge probability factor ~2 larger in LP
 → larger pitch, higher charge density per hole?

SUMMARY OF DISCHARGE PROBABILITY STUDIES

- Extensive R&D on GEM stability for the ALICE TPC upgrade launched
- Stability of the baseline solution for the upgraded TPC (4-GEM optimized for IBF) comparable to the "standard" 3-GEM configuration. Tests with alphas and at the SPS.
- Discharge studies with single- and multi-GEM structures point to the charge density hypothesis as a main contribution to the spark induction
- Try to reproduce measurements with a simple G4 simulation of alpha energy loss in detector medium – work ongoing
- Studies continue

DISCHARGE PROPAGATION STUDIES

POWERING SCHEME FOR GEM-ROC FOR THE ALICE TPC UPGRADE

- **GEM1**: <u>not segmented</u> side facing Central Electrode (drift volume)
 - Minimize distortions in case of a shortened segments
 - Minimize distortions at the chamber edges (functionality of a Cover Electrode)
- **GEM2,3,4**: <u>segmented</u> side facing Central Electrode

CONCERN: DISCHARGE PROPAGATION AFTER SPARK IN GEM1

SETUP

- Standard GEM (CERN, 140 um pitch, double mask)
- Alpha source (Pu, Am, Cm) shooting through a
 7 mm diameter hole in a 1.5 mm thick PCB cathode
- Rate = 569 ± 3 Hz
- Gas mixture: Ar-CO₂ (90-10)
 - Learn and debug the system
 - Define thresholds

- Also resistor chain supply
- HV settings (SF=100%):
 - E_{drift} = 400 V/cm (constant)
 - ΔV = 399 V
 - E_{IND} = 3006 V/cm

EFFECTIVE GAIN

Measured using I_{anode}/I_{primary} technique (with alphas) Fair agreement with other 1GEM setups we used

DISCHARGE PROPAGATION

Methodology

- Increase ΔV and observe "normal" (GEM) discharges.
- Slowly increasing E_{IND} , at some point one starts seeing propagated discharges.
- Amplitude of a propagated discharge ~order of magnitude higher than "normal" one.
- Large signal can be associated with a spark development between GEM_{Bottom} and padplane.

Experiment:

- ΔV = 403 V (SF=101%), ~40 dB attenuator
- GEM discharge amplitude: ~300 mV
- Propagated discharge amplitude: ~3 V
- Count GEM and propagated discharges
 - U_{THR-GEM} = 150 mV
 - $U_{\text{THR-PROP}} = 1 \text{ V}$
- Save waveforms and measure signal details
 - amplitude, shape, width,
 - time of occurrence
 - photography, LV script in preparation

COMPARISON TO LITERATURE

F. Sauli et al. NIM A 479 (2002) 294

Fig. 15. Discharge signals on anodes for increasing GEM capacitance, obtained by grouping one to four sectors.

Fig. 16. Anode signal for a fully propagating discharge.

- Clear separation of both curves.

- Onset of propagation for field values below Townsend amplification points to the streamer mechanism
- Propagation probability depends on primary spark energy (ΔV_{GEM})
- In case of a spark in a flipped foil, U_{BOT} increases towards U_{TOP} , thus E_{IND} goes up resulting in enhanced probability of full propagation.

PROPAGATION TIME

Time between primary and propagated discharge

- Finite propagation time; clear dependence on E_{IND}
- Points to the electron/ion streamer mechanism of propagation? (photon mechanism would be immediate)

ΔV DEPENDENCE Ar-CO₂ (90-10), R_L = 10 MΩ, INDEP. HV, $R_{GND-T/B}$ = 5/10 MΩ

- Slight dependence on E_{IND}

- Absolute value at 415 V biased by 1.2 s gate after a discharge signal (dead time) \rightarrow underestimated

ΔV DEPENDENCE Ar-CO₂ (90-10), R₁ = 10 MΩ, INDEP. HV, R_{GND-T/B} = 5/10 MΩ

- No significant dependence on ΔV in this narrow range (403-415 V, SF = 101 104%)
 - discharge rate too low for SF < 101 % or too high for SF >104%
 - Discharge propagation should depend on the energy of a primary spark:
 E_{capacitor} = ½ C×ΔV²

LITERATURE

Primary spark energy dependence

Fig. 17. Discharge propagation probability as a function of induction field for a sectored GEM.

C studies (F. Sauli et al.)

- 1 sector (x nF) propagation onset @ 9.5 kV/cm
- 4 sectors (4x nF) propagation onset @ 7 kV/cm
- Visible probability spread for 4x or 2x larger capacitance (→ energy)

ΔV studies (this work):

- $(415 \text{ V})^2/(403 \text{ V})^2 = 1.06$
- Too small differences to see anything?
- What about R_L, R_{GND} used in a setup?

INFLUENCE OF $R_L AND R_{GND}$

- No significant influence of the resistors values
- Same onset of propagation for both (TOP/BOT) configurations
- R_L quenches the discharge, limits the current flowing from the PS, but do not influence the energy of a primary discharge, thus propagation probability

RESISTOR CHAIN

- In case of a resistor chain (I_{RC} = 0.5 mA) the propagation onset is shifted by750-1000 V/cm towards higher fields for the standard orientation
- No (significant) change for the flipped option (onset at ~4 kV/cm)

9 nF TO GND

- To simulate an 80m HV cables 9 nF capacitors to GND were added in each HV channel.
- Two scenarios: R_L TOP or BOTTOM
- Two HV supply systems: Independent (grounded with $R_{GND-T/B} = 5/10$ M) channels and resistor chain
- 10k decoupling resistor in case of the electrode connected directly to HV (see indep. channels)
- No decoupling resistance in R-Chain "flipped" scenario (a mistake!)

9 nF TO GND

- R_L on TOP:
 - Independent channels: propagation starts with 100 150 V/cm lower fields
 - R-chain: no influence of additional capacitance
- R_L on BOT:
 - Independent channels: onset of propagation at ~200 V/cm lower fields
 - R-chain: onset of propagation at ~500 V/cm lower fields!! No decoupling resistance?

SUMMARY OF DISCHARGE PROPAGATION STUDIES

- Discharge propagation studied in Ar-CO₂ (90-10) for many HV configurations
- Discharge probability depends on gain (obviously)
- Propagation probability depends on energy of the primary discharge (only?)
 - No differences observed for different ΔV (small variations studied)
 - No differences observed for different R_L , R_{GND}
 - Higher propagation threshold when using R-Chain and $\rm R_L$ on top
 - Lower propagation threshold when adding C-to-GND (additional energy stored in the system)
- In parallel: SPICE simulation of different HV supply systems to understand the tripping behavior
- **OUTLOOK:** studies in Ne-CO₂-N₂ for the evaluation of the final ROC design

BONUS

GEM FOIL

- Hundreds (thousands?) of sparks
- Hundreds of propagated discharges
- "Repeated" discharges
- Many mistakes:
 - Trip only one channel
 - Set wrong ΔV (>500 V)
- I_{leak} < 100 pA
- Stable gain

DISCHARGE CINEMA

https://indico.cern.ch/event/496113/session/7/contribution/26/attachments/1242032/1827063/Sparks_SD_new.mp4