Development of a Single Ion Detector for Radiation Track Structure Studies

F. Vasi, M. Casiraghi, V. Bashkirov and R. Schulte

Outline

- Purpose
- Detector Working Principle
- First Prototype Characterization
- New Prototype: Thick GEMs From The CERN PCB Workshop
- Measurements With a Microbeam
- Efficiency vs Cathode Resistivity
- Summary & Outlook

Purpose

Development of a device for characterization of radiation track structure to study radiation biological effectiveness

Radiation track structure: spatial distribution of energy transfer points in radiation-

matter interaction

 Local clustering of energy transfer points, in particular ionizations, is important for the production of initial biological damage

- MC simulations show large ionization clusters induced, in particular, by high LET radiation, which can create complex DNA damages
- Ideal detector should provide information on spatial distribution of ionization events with single ionization resolution

Detector Principle

Readout strips Anode Sensitive volume: 100s nm track length in water Ea Cathode Primary ion producing Secondary electron avalanche

moving towards PCB top surface

ion-impact ionization

First Prototype Characterization

Source:

 Am-241 alphas 2 mm beam

Working gas:

propane

PCB:

- 3.3 mm G10 board with common top electrode
- Holes 0.8 mm, pitch 2 mm

Cathodes:

- Float glass
- Schott glass

Pulse of 5 mV and 500 ns High gain

Ion Arrival Time

Peak shift confirms the signal comes from the track.

Ion Detection Efficiency

Compared to simulation, very low ion detection efficiency of the order of a few %

Possible causes:

- Long cathode recharge time
- Low ion-impact ionization probability

Thickness of The Dielectric Plate

- Three simple versions made of acrylic plates with different thicknesses: 3.3 mm, 6.5 mm, 8.7 mm
- Four holes of 1.5 mm diameter and 10 mm pitch
- Float glass cathode
- Evaluation of alpha detection efficieny vs thickness with an Am-241 source collimated to 3 mm

Alpha Detection Efficiency

Efficiency: % of primaries producing at least one ionization in one of the holes

Alpha Detection Efficiency

Efficiency: % of primaries producing at least one ionization in one of the holes

Alpha Detection Efficiency

Efficiency: % of primaries producing at least one ionization in one of the holes

The New Prototype

Thick GEMs from the CERN PCB workshop: FR4 1 cm thick

Design 1: 1.5 mm holes, pitch 6 mm

Resistive cathode outside the low <a>pressure volume

Compact low pressure chamber and gas system

Design 2: 1.5 mm holes, pitch 4 mm

THGEM embedded in the chamber lid

Dark Rate: acrylic vs FR4 boards

Reduction of noise with FR4 CERN boards due to better manufacturing technique and, possibly, properties of dielectric material

Design 1 (6 mm pitch) vs Design 2 (4 mm pitch)

Mean counts/trigger: mean number of detected ions per primary particle

	Expected counts/trigger at 2 Torr	Expected counts/trigger at 2 Torr (with dead time)
Design 1	10	1.0
Design 2	16	1.5

Measurements at the PTB microbeam

Primaries:

Protons: 10 MeV

Alphas: 8 MeV, 20 MeV

Beam size: ~5 um at the vacuum

window

Primary rate: 6Hz

Detector:

Design 1 board and Schott glass

A
Α
Pı

Increasing LET

	Measured c/t	Expected c/t	Expected c/t with dead time	Ion detection efficiency
Alpha 10 MeV	0.7±0.1	5.3	0.7	13%
Alpha 20 MeV	0.3±0.1	1.1	0.2	27%
Proton 10 MeV	0.06±0.1	0.13	0.02	46%

Scan of The Sensitive Area

Beam: 2 mm FWHM at center of SV

Beam direction front

Efficiency vs Primary Rate

Efficiency vs Cathode Resistivity

Glass type	Float	Schott	Chinese
Resistivity	10^12 Ωcm	10^11 Ωcm	10^10 Ωcm
Thickness	2 mm	3 mm	1 mm
Alpha detection efficiency	7%	42%	65%

Further Increase With Larger Pitch

Glass type	Float	Schott	Chinese Pitch: 4 mm	Chinese Pitch: 6 mm
Resistivity	10^12 Ωcm	10^11 Ωcm	10^10 Ωcm	10^10 Ωcm
Thickness	2 mm	3 mm	1 mm	1 mm
Alpha detection efficiency	7%	42%	65%	89%

Counts/Triggers

Dark Rate

Summary & Outlook

- Ionization events produced in low pressure gas can be detected with singleion resolution
- The ion detection efficiency can be enhanced and dead time reduced by using thick GEMs (1cm) and by lowering cathode resistivity
- Efficiency needs to be further optimized to reconstruct the 3D spatial distribution of ionization tracks

Main open issues – next steps:

- Optimization of cathode resistivity
- Optimization of cathode design (e.g. resistive paste)
- Charge-up of dielectric material (e.g. use of glass GEM)

Acknowlegements

- Gas Detector Development Group at CERN for technical support and advice
- Ulrich Giesen for support of microbeam measurements at PTB

THANK YOU

Back up slides

PREVIOUS MEASUREMENTS WITH DIFFERENT CATHODES

1 hole 1 mm diameter Board 6.5 mm thickness pitch 1 cm

1.4 standard semiconductive 1.2 0.8 0.6 0.4 0.2 0.500 1000 1500 2000 250 $E/P[V/(cm \cdot Torr)]$

24x24 holes .8 mm diameter Board 3.3 mm thickness pitch 0.8 mm

CATHODE RESISTIVITY MEASUREMENTS

Chinese Glass

Dark Rate

