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Abstract

In this report we discuss static and time dependent electric fields in detector geometries with an
arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green’s
functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout
strips in these geometries. The effect of ’bulk’ resistivity on electric fields and signals is investigated. The
spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the
effect to be described by the diffusion equation is discussed. We apply the results to derive fields and
induced signals in Resistive Plate Chambers, Micromega detectors including resistive layers for charge
spreading and discharge protection as well as detectors using resistive charge division readout like the
MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase
crosstalk between readout electrodes.
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1. Introduction

This report discusses electric fields and signals in detectors that represent parallel plate geometries
with segmented readout like GEMs [1], Micromegas [2], RPCs [3], liquid nobel gas calorimeters [4] and
to some extent in silicon strip and pixel detectors. In all of these detectors, the charges generated inside
the sensor volume act as a source of the signal. Through the quasi-static approximation of Maxwell’s
equations [5][6][7] the derived solutions also apply to detectors that contain elements of finite resistivity.

The field of a point charge in such geometries, i.e. the Green’s function of the problem, is first of
all needed for calculation of the mutual influence of the charge carriers on each other. These are the so
called space-charge effects that play e.g. a very prominent role in RPCs. This solution is also employed
to calculate charge-up effects and related field distortions in detectors with finite resistivity.

The movement of the charges in these detectors induces signals on the metallic readout electrodes that are
connected to the readout electronics. Theorems employing so called weighting fields exist for calculation
of these signals for the case of grounded electrodes [8][9], electrodes connected with a linear impedance
network [10][11], and detectors where the sensitive volume is in addition filled with materials of finite
resistivity [12][14]. The above mentioned Green’s function is used to calculate the weighting fields of
strips and pads (pixels) for general parallel plate geometries.

The report is an extension of the techniques developed in [13][14] and specific attention is given to
the numerical evaluation of the formulas in view of practical application. Section 2 discusses the Green’s
function of an infinitely extended two layer geometry to develop the general concepts and also investigates
solutions of this geometry for finite extension i.e. including boundary conditions on circles and rectan-
gles. Section 3 extends these solutions to geometries that employ an arbitrary number of parallel layers
of different permittivity and conductivity. Section 4 applies the solutions to Resistive Plate Chambers.
Section 5 and 6 then discusses in some detail the dispersion of charge on thin resistive layers. Section 7
investigates the potentials on thin resistive layers for uniformly distributed currents. Section 8 is finally
treating the effect of resistive layers on the signals induced on readout electrodes. Section 9 discusses
some of the mathematical tools used to evaluate the integrals used in this report.

To conclude the introduction we recall the application of the quasi-static approximation of Maxwell’s
equations: Knowing the solution of the Poisson equation for a charge distribution ρ(~x) embedded in
a geometry of a given permittivity ε(~x), we find the time dependent solution (in the Laplace domain
with parameter s) for an ’externally impressed’ charge density ρe(~x, s) and a geometry that in addition
includes a finite (weak) conductivity σ(~x) by replacing ε(~x) with ε(~x) + σ(~x)/s and ρ(~x) with ρe(~x, s).
For detector applications the volume resistivity ρ(~x) = 1/σ(~x) is traditionally used.

As an example we look at the potential of a point charge Q in a medium of constant permittivity ε,
which is given by

φ(r) =
Q

4επ r
(1)

In case the medium has a conductivity σ and we place the ’external’ charge Q at t = 0, i.e. Q(t) = QΘ(t)
and therefore Q(s) = Q0/s, we replace ε by ε + σ/s and Q by Q/s and perform the inverse Laplace
transform, which gives

φ(r, s) =
Q

4π(sε+ σ)r
→ φ(r, t) =

Q

4πε r
e
−t
τ τ = ε/σ = ρε (2)

The potential is equal to the electrostatic one, but ’destroyed’ with the time constant τ . Finally we recall
that the current signal induced by two moving charges q and −q on a grounded electrode in a detector
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containing resistive elements is given by

I(t) = − q

Vw

∫ t

0

~Ew(~x1(t′), t− t′)~̇x1(t′)dt′ +
q

Vw

∫ t

0

~Ew(~x2(t′), t− t′)~̇x2(t′)dt′ (3)

The time dependent weighting field ~Ew(~x, t) represents the electric field in the detector volume in case all
electrodes are grounded and a delta potential V (t) = Vwδ(t) is applied to the electrode in question. ~x1(t)
and ~x2(t) are the trajectories of the charges q and −q where ~x1(0) = ~x2(0). It is important to consider
the movement of two opposite charges originating from the same point, since otherwise the unphysical
effect of creating a net charge at a given space point will be added to the result. As in the previous
example, this field can be derived using the quasistatic approximation by simply applying the ’constant’
potential Vw = L [Vxδ(t)] to the geometry in the Laplace domain.

2. Electric fields and weighting fields in a 2-layer geometry

In this section we discuss electric fields in a geometry consisting of two layers of different permittivity,
that are bound by grounded planes. The results will be extended to the general case of N layers in the
following section.

2.1. Potential of a point charge centred at the origin

We first investigate the electric field of a point charge in a two layer geometry as shown in Fig. 1.
We assume two layers of thickness b and g with constant dielectric permittivity of ε1, ε2, surrounded
by grounded metal plates. A point charge Q is placed on the boundary between the two layers at
r = 0, z = 0. The problem has rotational symmetry and we therefore use cylindrical coordinates. In
both layers there are no charges present, so the potential φ must be a solution of the Laplace equation.
Separation of the Laplace equation in cylinder coordinates and assuming rotational symmetry yields the
solutions J0(kr)[15] and Y0(kr)[16] for the radial part and ekz and e−kz for the axial part. Because Y0(kr)
diverges at r = 0, but the electric field must be finite for r = 0 (at z 6= 0), the coefficients of Y0(kr) are
zero and the general solution in the two layers is

φ1(r, z) =
1

2π

∫ ∞
0

J0(kr)
[
A1(k)ekz +B1(k)e−kz

]
dk − b < z < 0

φ2(r, z) =
1

2π

∫ ∞
0

J0(kr)
[
A2(k)ekz +B2(k)e−kz

]
dk 0 < z < g

The coefficients A(k) and B(k) must be determined by boundary conditions. The grounded plates at

z=g 

z=-b 

z=0 
Q 

x=y=r=0 

ϕ2      ε2  

ϕ1      ε1 

Figure 1: A point charge Q on the boundary between two dielectric layers.
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z = −b and z = g define the conditions φ1(−b, r) = 0 and φ2(g, r) = 0, which gives

A1e
−kb +B1e

kb = 0 (4)

A2e
kg +B2e

−kg = 0 (5)

On the boundary between the two dielectric layers we assume a surface charge density q(r). From Gauss’

Law ~∇ε(~x) ~E(~x) = ρ(~x) for a medium of inhomogeneous permittivity we derive that ’passing through an
infinitely thin sheet of charge’ with a surface charge density q(r) [C/cm2], the potential is continuous i.e.
φ1(r, 0) = φ2(r, 0) which gives

A1 +B1 = A2 +B2 (6)

and the εE component perpendicular to the sheet ’jumps’ by q(r)

ε1
∂φ1(r, z)

∂z
|z=0 − ε2

∂φ2(r, z)

∂z
|z=0 = q(r) (7)

The surface charge density corresponding to the point charge Q at r = 0 is q(r) = Qδ(r)/2πr, so this
last equation reads as

1

2π

∫ ∞
0

J0(kr)k [ε1(A1 −B1)− ε2(A2 −B2)] dk =
Q

2πr
δ(r)

Multiplying both sides of the equation with rJ0(k′r), integrating them over r from 0 to ∞ and using the
relation

∫∞
0
rJ0(kr)J0(k′r)dr = δ(k − k′)/k [18] we have

ε1(A1 −B1)− ε2(A2 −B2) = Q (8)

The four Eqs. 4, 5, 6, 8 determine A1, B1, A2, B2 to

A1 =
2Q sinh(kg)

D(k)
ebk B1 = −2Q sinh(kg)

D(k)
e−bk A2 = −2Q sinh(kb)

D(k)
e−gk B2 =

2Q sinh(kb)

D(k)
egk

(9)
D(k) = 4[ε1 cosh(bk) sinh(gk) + ε2 sinh(bk) cosh(gk)] (10)

The solutions then read as

φ1(r, z) =
Q

2π

∫ ∞
0

J0(kr)
4 sinh(gk) sinh(k(b+ z))

D(k)
dk − b < z < 0 (11)

φ2(r, z) =
Q

2π

∫ ∞
0

J0(kr)
4 sinh(bk) sinh(k(g − z))

D(k)
dk 0 < z < g (12)

2.2. Evaluation and divergence removal

The integrals in the expressions Eq. 11 and Eq. 12 cannot be expressed in closed form, so for evaluation
we have to either use numerical integration or find appropriate techniques to express the result as an
infinite series. We first focus on the numerical integration method and investigate the behaviour of the
integrand with respect to k in order to find an appropriate upper integration limit. For large values of k
the integrand behaves as

4 sinh(gk) sinh(k(b+ z))

D(k)
→ ekz

ε1 + ε2

4 sinh(bk) sinh(k(g − z))
D(k)

→ e−kz

ε1 + ε2

The integrand behaves like exp(−k|z|), so by using an upper integration limit for k of a multiple of 1/z
will give an accurate result. We see however that at z = 0, the expressions become constant. The Bessel
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function J0(kr) behaves as
√

2/πkr cos(kr− π/4) for large values of r, so the 1/
√
k factor together with

the oscillatory behavior results in convergence, although very slow. The expression for Ez however has
an additional factor of k so the integrand behaves like

√
k and therefore diverges. To cure this problem

we employ the following idea [13]: In case we move the two metal plates to infinity i.e. b, g →∞ we find

lim
b→∞

4 sinh(gk) sinh(k(b+ z))

D(k)
=

ekz

ε1 + ε2
lim
g→∞

4 sinh(bk) sinh(k(g − z))
D(k)

=
e−kz

ε1 + ε2

Having moved the grounded plates infinitely far away, this geometry corresponds to a point charge Q
sitting at the boundary of two infinite half-spaces of permittivity ε1 and ε2, for which we know to be
potential to be Q/(2π(ε1 + ε2)1/

√
r2 + z2). We therefore have the identity

1√
r2 + z2

=

∫ ∞
0

J0(kr)e−k|z|dk (13)

We can now write the integrand of φ1 as

ekz

ε1 + ε2
+

4 sinh(gk) sinh(k(b+ z))

D(k)
− ekz

ε1 + ε2
=

ekz

ε1 + ε2
+ f1(k, z)

and arrive with Eq. 13 at

φ1(r, z) =
Q

2π(ε1 + ε2)

1√
r2 + z2

+
Q

2π

∫ ∞
0

J0(kr)f1(k, z)dk (14)

and similarly for φ2(r, z). This expression corresponds to the potential of a point charge Q on the
boundary of two infinite half-spaces of permittivity ε1 and ε2 together with a ’correction’ term that
accounts for the presence of the grounded plates. The behaviour of f1(k, z) for large k and is now given
by

f1(k, z)→ −e
−k(2b+z)

ε1 + ε2
− 2ε2 e

−k(2g−z)

ε1 + ε2
(15)

The potential φ1 is defined for −b < z < 0, so the expression decays exponentially in the entire volume,
and even in the plane of the point charge at z = 0, an upper integration limit of a multiple of k = 1/(b+g)
will give an accurate evaluation. We can now repeat this procedure i.e. subtract the above expression
from f1 and perform the explicit integration of the two exponential terms and have

φ1(r, z) =
Q

2π(ε1 + ε2)

1√
r2 + z2

− Q

2π(ε1 + ε2)

1√
r2 + (2b+ z)2

(16)

− 2Qε2
2π(ε1 + ε2)

1√
r2 + (2g − z)2

+
Q

2π

∫ ∞
0

J0(kr)f2(k, z)dk

The two new terms correspond to two ’mirror’ charges of values −Q at z = −2b and −2ε2Q at z = 2g.
The process can be repeated ad infinitum and the potential is expressed as a sum of mirror charges with
an integral term that contributes less and less, the more mirror charges we use. Explicitly we can write
this in the following form

D(k) = e(b+g)k(ε1 + ε2)[1− p(b, g, k)] (17)

p(b, g, k) = e−2(b+g)k − ε1 − ε2
ε1 + ε2

e−2bk +
ε1 − ε2
ε1 + ε2

e−2gk (18)

We can verify that 0 < p(b, g, k) < 1 ∀(b, g, k, ε1, ε2) > 0 so we have

1

D(k)
=
e−(b+g)k

ε1 + ε2

1

1− p(b, g, k)
=
e−(b+g)k

ε1 + ε2

∞∑
n=0

p(b, g, k)n (19)
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Inserting this expression in Eq. 11 we find that the integrand consists of an infinite number of terms of
the form J0(kr)e−αk so they can all be explicitly integrated with Eq. 13 and the potential is expressed
as an infinite number of mirror charges. As an example we investigate the field for ε1 = ε2 = ε0 and have
p(b, g, k) = e−2(b+g)k

φ1(r, z) =
Q

4πε0

∞∑
n=0

J0(kr)e−(b+g)k
(
egk − e−gk

) (
e(b+z)k − e−(b+z)k

)
e−2n(b+g)kdk (20)

Evaluating all expressions with Eq. 13 and replacing g → d − z0, b → z0, z → z − z0 gives the correct
expression for the potential of a point charge in an empty condenser as presented in [19].

To conclude this section we evaluate the potential φ1 of Eq. 11 by using the method of residuals as
discussed in Section 9. The integrand has an infinite number of poles at km = imπ/(b + g) so the
resulting expression is (Section 9.1)

φ1(r, z) =
Q

2πε0

∫ ∞
0

J0(kr)
sinh(gk) sinh(k(b+ z))

sinh(k(b+ g))
dk = (21)

=
Q

πε0(b+ g)

∞∑
n=1

−(−1)n sin

(
nπg

b+ g

)
sin

(
nπ(b+ z)

b+ g

)
K0

(
nπr

b+ g

)
(22)

The expression diverges for r = 0, so the numerical evaluation does not work at r = 0 and convergence will
be slow close to r = 0. The expression is however well suited to evaluate the fields at large r since the mod-
ified Bessel functions K0(x) behave as e−x/

√
x for large values of x. So for r > b+g the potential behaves

as 1/
√
r exp(−πr/(b + g)), because the higher order terms K0(nπr/(b + g)) ≈ 1/

√
r exp(−nπr/(b + g))

all decay more rapidly with r.

In case the two layers have different permittivities we have to find the zeros of D(k) in Eq. 10. Since the
zeros all lie only along the imaginary axis we write k = iy and the equation reads as

ε1 tan(gy) = −ε2 tan(by) (23)

This is a transcendent equation and we can find the zeros only with numerical methods, however by
plotting the two sides of the equation on top of each other we see that the first zero has to satisfy the
condition

1

2b
< y1 <

1

2g
for b > g

1

2g
< y1 <

1

2b
for b < g (24)

By evaluating the residual at k1 we find a term K0(y1r) so we learn that for large values of r the potential
behaves as e−y1r

√
r.

2.3. Potential of a point charge centred at r0, ϕ0

In case the point charge in Fig. 1 is not centred at the origin but at a position r0, ϕ0 (Fig. 3a), we
have to replace r by the distance P between the charge and the observer point r, ϕ, which is given by

P =
√
r2 + r20 − 2rr0 cos(ϕ− ϕ0) (25)

Using the identity [18]

J0(kP ) =

∞∑
m=−∞

eim(ϕ−ϕ0)Jm(kr)Jm(kr0) (26)
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the solution becomes

φ1(r, ϕ, z) =
1

2π

∫ ∞
0

∞∑
m=−∞

eim(ϕ−ϕ0)Jm(kr)Jm(kr0)
[
A1(k)ekz +B1(k)e−kz

]
dk (27)

and equally for φ2.

2.4. Potential of a point charge in a geometry grounded on a circle

In case the geometry from Fig. 1 is not extended to infinity but grounded on a circular boundary at
r = c (Fig. 3b), the condition that φ(r = c, ϕ) = 0 implies that Jm(kc) = 0, and therefore only the values
of kc = jml, where jml is the lth zero of Jm(x), are permitted. The solution of the problem is therefore
written as

φ1(r, z) =

∞∑
l=1

∞∑
m=−∞

eim(ϕ−ϕ0)Jm(kmlr)Jm(kmlr0)
[
C1(kml)e

kmlz +D1(kml)e
−kmlz

]
dk (28)

with kml = jml/c, and similar for C2, D2 of φ2(r, z). Three conditions for C1, D1, C2, D2 are equal to the
ones for A1, B1, A2, B2 from Eqs. 4, 5, 6 and for the fourth condition we use the relation and

ε1
∂φ1
∂z
− ε2

∂φ2
∂z

=
Q

r
δ(r − r0)δ(ϕ− ϕ0) (29)

Multiplying the equation with Jm(kml′r) and e−im
′ϕ and employing the relations∫ 2π

0

e−imϕeim
′ϕdϕ = 2πδmm′

∫ c

0

rJm(kmlr)Jm(kml′r)dr =
c2

2
[Jm+1(jml)]

2δll′ (30)

yields

ε1(C1 −D1)− ε2(C2 −D2) =
Q

cπ

1

jml[Jm+1(jml)]2
(31)

Comparing this to Eq. 8 we find that the coefficients C,D are related to A,B by

C1(kml) =
A1(kml)

cπ jml[Jm+1(jml)]2
D1(kml) =

B1(kml)

cπ jml[Jm+1(jml)]2
(32)

and similar for C2, D2.

2.5. Potential of a point charge in a geometry grounded on a rectangle

For the case where the geometry is grounded at x = 0, a and y = 0, b (Fig. 3c) and the charge is
placed at position x0, y0 we have to solve the Laplace equation in Cartesian coordinates, and the most
general solution that satisfies these boundary conditions is

φ1(x, y, z) =

∞∑
l=1

∞∑
m=1

sin

(
lπx

a

)
sin
(mπy

b

) [
E1(klm)eklmz + F1(klm)e−klmz

]
(33)

with klm = π
√
l2/a2 +m2/b2. As before, three conditions for E and F are equivalent to the ones for A

and B, and the fourth conditions is

ε1
∂φ1
∂z
− ε2

∂φ2
∂z

= Qδ(x− x0)δ(y − y0) (34)
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multiplying the equation with sin(l′πx/a) and sin(m′πy/b) and exploiting the orthogonality of the ex-
pressions gives

ε1(E1 − F1)− ε2(E2 − F2) =
Q sin lx0

a sin ly0
b

abklm
(35)

so the coefficients are related to A and B by

E1(kml) =
A1(klm) sin lx0

a sin ly0
b

abklm
F1(kml) =

B1(klm) sin lx0

a sin ly0
b

abklm
(36)

We can find the solution for an infinitely extended geometry in Cartesian coordinates by shifting the
coordinate system by a/2 and b/2 such that the origin is in the center of the rectangle and taking the
limit of a and b to infinity. Writing kx = lπ/a and ky = mπ/b and replacing the sum by an integral∑
l →

∫
dl = a/π

∫
dkx and

∑
m →

∫
dm = b/π

∫
dky we find the solution as

φ1(x, y, z) =
1

π2

∫ ∞
0

∫ ∞
0

cos[kx(x− x0)] cos[ky(y − y0)]
1

k

[
A1(k)ekz +B1(k)e−kz

]
dkxdky (37)

In case the geometry is grounded at x = 0, a but insulated at y = 0, b (Fig. 3d), we have to employ the
condition that ∂φn/∂y = 0 at y = 0, b and derive a solution similar to Eq. 33, that will be quoted later.

2.6. Weighting fields

x 

z 

Q 
z=z0  

z=0  

z=d  

ϕ1  

ϕ2  

x0, y0  

d 

x 

y 

z 

wx 

wy 

Figure 2: Point charge in an empty condenser (left) and a rectangular readout pad (right).

In this section we want to calculate the weighting field of a rectangular pad centred at x = y = 0 with
a width of wx, wy for the geometry of Fig. 2, which is infinitely extended and where the permittivity of
both layers is equal to ε0. We use the solution in Cartesian coordinates (Eq. 37) and shift the coordinate
system such that there is a grounded plate at z = 0 and z = g and the point charge is placed at x0, y0, z0.
Using the coefficients from Eq. 9 and replacing g = d− z0, b = z0 we have

φ1(x, y, z, x0, y0, z0) =
Q

π2ε0

∫ ∞
0

∫ ∞
0

cos [kx(x− x0)] cos [ky(y − y0)]
sinh(kz) sinh[k(d− z0)]

k sinh(kd)
dkxdky

(38)
and φ2 is given by the same expression with z and z0 exchanged. The charge induced on the rectangular
pad is related to the electric field on the surface by

Qind(x0, y0, z0) =

∫ wx/2

−wx/2

∫ wy/2

−wy/2
−ε0

∂φ1
∂z
|z=0dxdy (39)
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Through the reciprocity theorem we know that Qind = −Q/Vwφw(x0, y0, z0) where φw is the potential
at x0, y0, z0 in case the charge is removed and the pad is put to potential Vw. We therefore have

φw(x, y, z) =
4Vw
π2

∫ ∞
0

∫ ∞
0

cos(kxx) sin(kx
wx
2

) cos(kyy) sin(ky
wy
2

)
sinh k(d− z)
kxky sinh(kd)

dkxdky (40)

and
~Ew = −~∇φw (41)

Details of this expression are given in [19].

3. Electric fields and weighting fields in a N-layer geometry

In this section we generalize the results form the previous section to a geometry with an arbitrary
number of layers.

3.1. Potential for N point charges

zN-1 

z0 

z1 Q1 

ϕ2      ε2  

ϕ1      ε1 

Q2 

ϕN      εN  
zN 

zN-2 

z2 

ϕN-1   εN-1  
QN-2 

QN-1 

x 

y 

r0 
ϕ0 

Q 

x0 

y0 

0 

x 

y 

x0 

y0 Q 

0 a 

b 

y 

x x0 

y0 
Q 

0 
a 

b 

x 

y 

r0 
ϕ0 

Q 

0 

r=c 

a) b) 

c) d) 

Figure 3: Left: A geometry of N dielectric layers enclosed by grounded metal plates. On the boundary between two layers
at r = 0 there are point charges Qn. Right: Different boundary conditions in the x-y plane.

We consider the geometry shown in Fig. 3, for which the solutions can be written in analogy to the
previous section. We assume N dielectric layers ranging from zn−1 < z < zn of constant permittivity
εn. On the boundaries at z = zn there are charges Qn. At z = z0 and z = zN there are grounded metal
plates. We define a characteristic function fn(k, z) for each layer as

fn(k, z) = Ane
kz +Bne

−kz n = 1...N (42)

and can write the solutions for different boundaries:

For a geometry that extends to infinity in x-y direction with the charges Qn at positions r0, ϕ0 (Fig.
3a), the solution for the potential in layer n in cylindrical coordinates is given by

φn(r, ϕ, z) =
1

2π

∫ ∞
0

∞∑
m=−∞

eim(ϕ−ϕ0)Jm(kr)Jm(kr0)fn(k, z)dk (43)

10



In case the charges are placed at r0 = 0 the solutions are

φn(r, z) =
1

2π

∫ ∞
0

J0(kr)fn(k, z)dk (44)

The solution for an infinitely extended geometry with the charges at position x0, y0 in Cartesian co-

ordinates is given by (k =
√
k2x + k2y)

φn(x, y, z) =
1

π2

∫ ∞
0

∫ ∞
0

cos[kx(x− x0)] cos[ky(y − y0)]
fn(k, z)

k
dkxdky (45)

The solution for a geometry that is grounded on a boundary at radius r = c (Fig. 3b) with the charges
at r0, ϕ0 is given by (kml = jml/c where jml is the lth zero of Jm(x)).

φn(r, z) =
1

cπ

∞∑
l=1

∞∑
m=−∞

eim(ϕ−ϕ0)
Jm(kmlr)Jm(kmlr0)

jml[Jm+1(jml)]2
fn(kml, z) (46)

For the case where the geometry is grounded on a rectangle at x = 0, a and y = 0, b (Fig. 3c) the

solution is (klm = π
√

l2

a2 + m2

b2 )

φn(x, y, z) =
4

ab

∞∑
l=1

∞∑
m=1

sin
(
lπ
x

a

)
sin
(
lπ
x0
a

)
sin
(
mπ

y

b

)
sin
(
mπ

y0
b

) fn(klm, z)

klm
(47)

If the boundary is grounded at x = 0, a and insulated at y = 0, b (Fig. 3d) the solution is (klm =

π
√

l2

a2 + m2

b2 )

φn(x, y, z) =
4

ab

∞∑
l=1

∞∑
m=0

sin
(
lπ
x

a

)
sin
(
lπ
x0
a

)
cos
(
mπ

y

b

)
cos
(
mπ

y0
b

) (
1− δ0m

2

)
fn(klm, z)

klm
(48)

The 2N coefficients An(k) and Bn(k) are defined by the two conditions at the grounded plates and
at the 2(N − 1) conditions at the N − 1 dielectric interfaces

A1e
kz0 +B1e

−kz0 = 0 ANe
kzN +BNe

−kzN = 0 (49)

Ane
kzn +Bne

−kzn = An+1e
kzn +Bn+1e

−kzn

εnAne
kzn − εnBne−kzn = εn+1An+1e

kzn − εn+1Bn+1e
−kzn +Qn

with n = 1...N − 1. For solving these equations with symbolic equation manipulation programs it is
useful to write them in matrix-form with a 2N × 2N matrix M . Using the Kronecker delta δ(n,m) we
have for m = 1...2N

M1,m = δ(m, 1) ekz0 + δ(m, 2) e−kz0 (50)

M2N,m = δ(m, 2N − 1) ekzN + δ(m, 2N) e−kzN

11



and for n = 1...N − 1 and m = 1, 2N

M2n,m = δ(m, 2n− 1) ekzn + δ(m, 2n) e−kzn

− δ(m, 2n+ 1) ekzn − δ(m, 2n+ 2) e−kzn (51)

M2n+1,m = εnδ(m, 2n− 1) ekzn − εnδ(m, 2n) e−kzn

− εn+1δ(m, 2n+ 1) ekzn + εn+1δ(m, 2n+ 2) e−kzn

In addition we define the vectors ~a and ~b as

~a = (A1, B1, A2, B2, ..., AN , BN )T (52)

~b = (0, 0, Q1, 0, Q2, 0, ..., QN−2, 0, QN−1, 0)T (53)

or in Matrixform
a2n−1 = An a2n = Bn n = 1...N (54)

b2n+1 = Qn n = 1...N − 1 (55)

The equation to solve is then
M~a = ~b → ~a = M−1~b (56)

For later use we write down explicitly the matrix equation for the 3-layer geometry (Fig. 4a)

a)

z2 

z0 

z1 Q1 

ϕ2      ε2  

ϕ1      ε1 

Q2 

ϕ3      ε3  

z3 

b)

z2 

z0 

z1 Q1 

ϕ2      ε2  

ϕ1      ε1 

Q2 

ϕ3      ε3  

z3 

z4 
ϕ4      ε4  

Q3 

Figure 4: a) A geometry with three dielectric layers b) A geometry with four dielectric layers.

M =


ekz0 e−kz0 0 0 0 0
ekz1 e−kz1 −ekz1 −e−kz1 0 0
ε1e

kz1 −ε1e−kz1 −ε2ekz1 ε2e
−kz1 0 0

0 0 ekz2 e−kz2 −ekz2 −e−kz2
0 0 ε2e

kz2 −ε2e−kz2 −ε3ekz2 ε3e
−kz2

0 0 0 0 ekz3 e−kz3

 (57)

~a = (A1, B1, A2, B2, A3, B3)T ~b = (0, 0, Q1, 0, Q2, 0)T

12



and 4-layer geometry (Fig. 4b)

M =



ekz0 e−kz0 0 0 0 0 0 0
ekz1 e−kz1 −ekz1 −e−kz1 0 0 0 0
ε1e

kz1 −ε1e−kz1 −ε2ekz1 ε2e
−kz1 0 0 0 0

0 0 ekz2 e−kz2 −ekz2 −e−kz2 0 0
0 0 ε2e

kz2 −ε2e−kz2 −ε3ekz2 ε3e
−kz2 0 0

0 0 0 0 ekz3 e−kz3 −ekz3 −e−kz3
0 0 0 0 ε3e

kz3 −ε3e−kz3 −ε4ekz3 ε4e
−kz3

0 0 0 0 0 0 ekz4 e−kz4


(58)

~a = (A1, B1, A2, B2, A3, B3, A4, B4)T ~b = (0, 0, Q1, 0, Q2, 0, Q3, 0)T

We investigate the structure of the matrix M to draw some conclusions on the general solutions. An
inverse matrix can be written in the form 1/det(M) times powers Mn and traces of tr(M). Since all
elements of M have exponential factors of the form e−kα and since the determinant, powers and traces of
M are all just sums and products of the matrix elements of M we know that the characteristic functions
fn for each layer are of the form

fn(k, z) =
un(k)ekz + vn(k)e−kz

D(k)
D(k) = det(M) (59)

where un(k), vn(k) and D(k) are expressions that just consist of sums of exponentials terms e−kα. In-
specting the matrix shows that, except for k = 0, the columns can never form linear dependent set of
vectors for any value of k > 0, so we know that D(k) does not have any zeroes for k > 0. This in turn
means that D(k) is either always positive or always negative for any value of k ∈ R > 0. For evalua-
tion of the integrals with the method of residues, the complex zeroes of D(k) are therefore the relevant
quantities. Specifically it can be shown that D(k) is of the form

D(k) = (−1)N ek(zN−z0)

(
N−1∏
m=1

(εm + εm+1)

)1 +

2N−1∑
m=1

γm e
−kδm

 (60)

with
− 1 < γm(ε1...εN ) < 1 δm(z0....zN ) > 0 for m = 1...2N − 1 (61)

This allows fn to be written in the form

fn(k, z) =

∑
m αnm e

−kβnm

1 +
∑2N−1
m=1 γm e−kδm

βnm(z0...zN , z) > 0 αnm(ε1...εN , Q1...QN−1) (62)

We can now expand the denominator around an appropriate value according to

1

1 + x
=

∞∑
n=0

(−1)n
(x− x0)n

(1 + x0)n+1
− 1 < x < 2x0 + 1 (63)

Since we know that

− 1 <

2N−1∑
m=1

γm e
−kδm < 2N − 1 ∀k > 0 (64)
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we can use expand around x0 = 2N−1 − 1 and therefore express fn(k, z) an an infinite sum of expression
of the form e−kα. Using Eq. 13 and we can therefore express the solution as an infinite sum of ’mirror
charges’. This concludes the proof that the potential of a point charge in a general parallel layer geometry
can be expressed by an infinite sum of ’free space point charge potentials’.

As pointed out in the previous section, the integrals of Eq. 43, 44 and 45 are difficult to evaluate in
the z-planes of the charges Qn i.e. at zn. Using the technique of extracting the slowly converging parts
from the integrand we can arrive at expressions that are easier to evaluate. We use the example for the
infinitely extended geometry in cylindrical coordinates with the charges centred at r0 = 0 and have for
n = 1, N the expressions

φn(r, z) =
Qn−1

2π(εn−1 + εn)

1√
r2 + (z − zn−1)2

+
Qn

2π(εn + εn+1)

1√
r2 + (z − zn)2

+
1

2π

∫ ∞
0

J0(kr)

(
Ane

kz +Bne
−kz − Qn−1

εn−1 + εn
e−k(z−zn−1) − Qn

εn + εn+1
e−k(zn−z)

)
dk

3.2. Inclusion of resistivity

a)

d 

ρ=1/σ [Ωcm] 

b 

a 

b)

R [Ω/☐] 

a 

b 

Figure 5: a) A block of material with volume resistivity ρ [Ωcm]. b) A thin sheet of material with surface resisitivity
R [Ω/square].

Using the quasi-static approximation of Maxwell’s equations [7], all results from the previous section
can also be applied to geometries where the layers have finite conductivity. The conductivity of a material
is defined by the volume resistivity ρ [Ωcm]. Typical values of materials used for RPCs are 1010 Ωcm for
Bakelite and 1012 Ωcm for glass. The conductivity is defined by σ(~x) = 1/ρ(~x). The current density
~j1(~x) [A/cm2] inside the resistive layer is related to the electric field inside the layer by ~j1(~x) = 1/ρ ~E(~x).
The resistance represented by the material block in Fig. 5a is therefore given by ρ a/(bd).

If we make the resistive layer very thin, the current can only flow in ’2 dimensions’ and the current
density ~j2(x, y) [A/cm] is related to the electric field inside the layer by

~j2(x, y) = ~j1(x, y)d =
d

ρ
~E(x, y) =

1

R
~E(x, y) R =

ρ

d
(65)

The resistance represented by the resistive sheet in Fig. 5b is given by Ra/b. We can therefore conclude
that for layers that have finite conductivity σn = 1/ρn, where ρn represents the volume resistivity of the
layer, we find the fields in the Laplace domain by replacing εn by εn + 1/(ρns) in all expressions. In case
we want a specific layer m i.e. zm−1 < z < zm to represent a thin sheet of a given surface resistivity
R [Ω/square], we have to replace εm of this layer by

εm → εm +
1

(zm − zm−1)Rs
(66)

In case we want to make this layer infinitely thin we have to perform the limit limzm→zm−1
φn for all

expressions.

14



If we use the static solutions for charges Q1, Q2, ..., QN , replace εm by εm + 1/(ρms) and perform the
inverse Laplace transforms of the expressions, we find the time dependent fields for the case where charges
Q1δ(t), Q2δ(t), ..., QNδ(t) are placed on the boundaries of the layers, since we have the Laplace transform
L [Qδ(t)] = Q.
In case we want the solutions for the situation where charges Qn are placed at t = 0, i.e. Q(t) = QΘ(t),
with Θ(t) being the Heaviside step function, we have to replace the Qn in the static solutions by Qn/s,
since we have L [QΘ(t)] = Q/s.
In case there are currents In placed on the resistive layers we have Qn(t) = In t and therefore L [Qn(t)] =
In/s

2, so we have to replace the Qn of the static solutions by In/s
2 before performing the inverse Laplace

transform.

Finally we note that in many occasions we are interested in the potentials and fields at t = 0 and
for long times t → ∞. These expressions can be directly calculated in the Laplace domain and there is
no need to perform the inverse Laplace transform, since the following relations hold:

F (s) = L [f(t)] f(t→∞) = lim
s→0

sF (s) f(t→ 0) = lim
s→∞

sF (s) (67)

3.3. Weighting fields

Before moving to explicit geometries we investigate the general formulas that allow the calculation of
signals that are induced on one of the grounded electrodes by the movement of charges in the different
layers. We assume the geometry of Fig. 6 where a point charge is placed between zm and zm+2.

We calculate coefficients An and Bn for the geometry where the layers below and above the point

a)

zN-1 

z0 

z1 

εm  

ε1    E1z 

Q 

 εN  
zN 

zm+2 

zm 

zm+1 

εm+1=εm  

x=y=r=0 b)

zN-1 

z0 

z1 

εm  

 εN  
zN 

zm+2 

zm 

z 

x=y=r=0 

ϕw(x,y,z,t)       

Vw  

wx  

ε1 

wy  

c)

zN-1 

z0 

z1 

εm  

ε1    E1z 

 εN  

zN 

zm+2 

zm 

z 

x=y=r=0 

ϕw(x,y,z,t)       

Vw  
wx  

Figure 6: a) Point charge in a N layer geometry. b) Potential φw due to a rectangular pad at potential of Vw. c) Potential
φw due to an infinitely extended strip at potential Vw.

charge have the same permittivity εm. The electric field on the surface of the grounded plate at z = z0
is related to the induced surface charge density q by q = ε1Ez0 so we find the charge Qind induced on an
area A of the metal surface to be

q(x, y) = −ε1
∂φ1
∂z
|z=z0 Qind =

∫ ∫
A

q(x, y) dxdy (68)

By the reciprocity theorem we have Qind = −Q/Vw φw(x0, y0, zm+1) where φ is the potential at position
x0, y0, zm+1 in case the point charge Q is removed and the area A on the grounded plate is set to potential
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Vw while the rest stays grounded, so we have

φwn (x0, y0, zn+1) = ε1
Vw
Q

∫ ∫
A

∂φ1
∂z
|z=z0dxdy Ew = −~∇φw (69)

and therefore

φwn (x, y, z) = ε1
Vw
Q

4

π2

∫ ∞
0

∫ ∞
0

cos(kxx) sin(kxwx/2) cos(kyy) sin(kywy/2)

kxky

×
[
A1(k, zn+1 = z)ekz0 −B1(k, zn+1 = z)e−kz0

]
dkxdky (70)

For the case of an infinitely long strip, i.e. wy → ∞ we change variables to sy = kywy/2, let wy → ∞
and use

∫∞
0

sin(sy)/sydsy = π/2 which gives

φwn (x, z) = ε1
Vw
Q

2

π

∫ ∞
0

cos(kx) sin(kwx/2)

k
×
[
A1(k, zn+1 = z)ekz0 −B1(k, zn+1 = z)e−kz0

]
dk (71)

In case also wx goes to infinity we have the weighting potential of the entire electrode which becomes

φwn (z) = ε1
Vw
Q

[A1(k = 0, zn+1 = z)−B1(k = 0, zn+1 = z)] (72)

In this case the weighting field and potential can be evaluated to

Ewn =
Vw
εn

(
N∑
m=1

zm − zm−1
εm

)−1
zn−1 < z < zn (73)

φwn (z) = Vw −
n−1∑
m=1

(zm − zm−1)Ewm − (z − zn−1)Ewn zn−1 < z < zn (74)
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4. Geometry representing a Resistive Plate Chamber

In this section we present the explicit formulas for some common RPC geometries.

4.1. Single layer RPC

As a first application of the formalism developed in the previous sections we investigate a geometry
with 3 layers, shown in Fig. 7a, that represents e.g. a single gap RPC with one resistive layer. To find

a)

z2 

z0=-b 

z1=0 
Q1=0 

ϕ2      ε0  

ϕ1      ε0εr 
 

Q2=Q ϕ3      ε0  

z3=g 

b)

x 

z0=-b 

0 
ε0εr 

ε0     ϕw(x,z)    Ew(x,z)   

z3=g 
z 

wx 

Figure 7: a) A geometry with three layers and one point charge representing e.g. a single gap RPC. b) Weighting field for
a strip electrode of widthwx and infinite extension in y-direction.

the coefficients A1, B1, A2, B2, A3, B3 for this geometry we have to solve the equations Eq. 49, 56 that
are explicitly written in Eq. 57. We set

z0 = −b z1 = 0 z3 = g ε1 = εrε0 ε2 = ε3 = ε0 Q1 = 0 Q2 = Q (75)

and get for the the characteristic functions fn(k, z)

f1(k, z) = Q sinh(k(b+ z)) sinh(k(g − z2))/(ε0D(k)) (76)

f2(k, z) = Q sinh(k(g − z2))[sinh(bk) cosh(kz) + εr cosh(bk) sinh(kz)]/(ε0D(k)) (77)

f3(k, z) = Q sinh(k(g − z))[sinh(bk) cosh(kz2) + εr cosh(bk) sinh(kz2)]/(ε0D(k)) (78)

with
D(k) = sinh(bk) cosh(gk) + εr cosh(bk) sinh(gk)

This solution can now be used to calculate the potential and electric field due to charges inside the gas
gap of the RPC, which is essential for studies of space-charge effects in these detectors.

φ2(r, z) =
1

2π

∫ ∞
0

J0(kr)f2(k, z)dk φ3(r, z) =
1

2π

∫ ∞
0

J0(kr)f3(k, z)dk (79)

As pointed out earlier the numerical evaluation of the integral is difficult when z is close to the ’plane’
at z = z2 where the charge is sitting. By using the trick described in Section 2.2 the expression can be
written as

φ2(r, z) =
Q

4πε0
√
r2 + (z2 − z)2

+
1

2π

∫ ∞
0

J0(kr)

[
f2(k, z)− Q

2ε0
e−k(z2−z)

]
dk (80)

φ3(r, z) =
Q

4πε0
√
r2 + (z − z2)2

+
1

2π

∫ ∞
0

J0(kr)

[
f3(k, z)− Q

2ε0
e−k(z−z2)

]
dk (81)
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The expressions represent a point charge Q in free space together with a term that accounts for the
presence of the dielectric layer and the grounded plates, which is more suited for numerical evaluation.
As shown in Section 2.2 and in [19] one can continue to use further ’mirror charges’ to reduce the contri-
bution integral term to arbitrarily small values.

To find the weighting potential for a readout pad or readout strip we evaluate the Eq. 70, 71, 72
and have

φw(x, y, z) =
4εrVw
π2

∫ ∞
0

∫ ∞
0

cos(kxx) sin(kxwx/2) cos(kyy) sin(kywy/2) sinh(k(g − z))
kxkyD(k)

dkxdky (82)

φw(x, z) =
2εrVw
π

∫ ∞
0

cos(kx) sin(kwx/2) sinh(k(g − z))
kD(k)

dk (83)

φw(z) =
εrVw(g − z)
b+ εrg

Ewz =
εrVw
b+ εrg

(84)

Fig. 7b) represents the geometry with a readout strip of width wx. We first assume the geometry to

a) -20 -10 0 10 20
x�g
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0.4

0.6

0.8

1.0
Ew�HVw�gL

b) -15 -10 -5 0 5 10 15
x�g

0.2

0.4

0.6

0.8

1.0

Figure 8: a) Weighting field Ez at position z = g/2 for b = 4g and wx = 20g. The three curves represent εr = 1 (bottom),
εr = 8 (middle) and εr = ∞ (top). b) Normalized weighting field for the same geometry with wx = g for εr = 1(inner),
εr = 8 (middle) and εr =∞ (outer).

represent a single layer RPC with a gas gap of g = 0.25 mm and a resistive layer of dielectric permittivity
εr and thickness b = 1 mm. We assume a very wide readout strip width wx = 5 mm and we find for the
z-component of the weighting field in the center of the gas gap (z = 0.125 mm) the numbers shown in Fig.
8a). The three curves represent dielectric permittivities of εr = 1 (bottom), 8 (middle), ∞ (top). The
strip extends between −10 < x/g < 10 and the value at x/g = 10 is therefore half of the peak as required
by symmetry for a wide readout strip. The value in the center of the strip is close to the one from Eq. 84
for the ’infinitely wide’ strip and it is clear from this expression that a higher dielectric permittivity of
the resistive plate will increase the weighting field and therefore the induced signal. For precise position
measurements one has to use narrow strips, and Fig. 8a) shows the weighting field for a strip of width
wx = g = 0.25 mm and εr = 1, 8,∞. The curves are normalized to the peak of the weighting field, so we
see that the higher permittivity will result in a slightly wider pad response function. The value of εr = 8
which is typical for glass and bakelite used in RPCs gives a shape that is already close to the one for an
arbitrarily large permittivity.

The effect of typical resistivities of 1010− 1012 Ωcm used in RPCs results in very long time constants and
has no impact on the fast RPC signal shape. The impact of the resistivity on the electric fields in the
gas gap will be discussed in the next section.
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4.2. Effect of resistivity

a)

z=g 

z=-b 

z=0 
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x=y=r=0 

E2      ε0  

E1      ε0εr                     σ 

b)
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z=0 
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x=y=r=0 

E2      ε0  

E1 ε0εr     i0(r) σ 

Figure 9: a) A point charge Q placed on the resistive layer at t = 0. b) A current I0 ’impressed’ on the resistive plate at
r = 0.

In this section we want to investigate the effect of resistivity in the single gap RPC using the quasi
static approximation as outlined in the introduction. We assume layer 1 of the geometry shown in Fig.
9a) to have finite conductivity σ = 1/ρ. We first recall a few time constants related to this conductivity.
In Fig. 10a) we have a point charge Q on the boundary of two infinite half spaces with permittivity ε1

a)

z=0 
Q 

x=y=r=0 

ε0εr                     σ 

ε0                     

b)

z=g 

z=-b 

z=0 q 
E0

2      ε0  

E0
1 ε0εr     

σ 

Figure 10: a) A point charge Q on the surface of an infinite half-space with conductivity σ and permittivity εrε0. b) An
infinitely extended sheet of charge of density q on the surface of the resistive layer inside the RPC geometry.

and ε2. The potential is given by φ(r) = Q/(2π(ε1 + ε2)r) [18]. We put the point charge Q at t = 0 i.e.
Q(t) = QΘ(t) which reads as Q(s) = Q/s in the Laplace domain. The potential in the Laplace domain
is then given by writing ε1 = ε0εr + σ/s and ε2 = ε0 and we have

φ(r, s) =
Q

sr

1

2πε0(εr + σ/(sε0) + 1)
φ(r, t) =

Q

r2πε0(1 + εr)
e−t/τ1 τ1 =

ε0(1 + εr)

σ
(85)

The charge is therefore ’destroyed’ with a time constant τ1. Next we look at the geometry in Fig. 10b)
where a layer of charge with density q is placed on the boundary between the two layers. Using Gauss’
law we can calculate the electric field in the two layers to be

E0
1(s) = − g q(s)

ε1g + ε2b
= −q

s

g

ε0[g(εr + σ/(ε0s)) + b]
E0

2(s) =
b q(s)

ε1g + ε2b
=
q

s

b

ε0[g(εr + σ/(ε0s)) + b]
(86)

and performing the inverse Laplace transform gives

E1(t) = − g q

ε0(εrg + b)
e−t/τ2 E2(t) =

b q

ε0(εrg + b)
e−t/τ2 τ2 =

ε0
σ

(
b

g
+ εr

)
(87)

The charge is destroyed with a characteristic time constant τ2 which is equal to τ1 in case b = g.
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Finally we can calculate what happens when we put a point charge Q on the surface of the resistive
plate at t = 0 as shown in Fig. 9a). We use Eqs. 11, 12 with

ε1 = ε0εr + σ/s ε2 = ε0 Q1 = Q/s (88)

E1(r, z, s) = − Q

2πs

∫ ∞
0

k J0(kr)
sinh(gk) cosh(k(b+ z))

ε0[sinh(bk) cosh(gk) + (εr + σ/(ε0s)) cosh(bk) sinh(gk)]
dk (89)

E2(r, z, s) =
Q

2πs

∫ ∞
0

k J0(kr)
sinh(bk) cosh(k(g − z))

ε0[sinh(bk) cosh(gk) + (εr + σ/(ε0s)) cosh(bk) sinh(gk)]
dk

We find the time dependent fields by performing the inverse Laplace transforms and have

E1(r, z, t) = − Q
2π

∫ ∞
0

k J0(kr)
sinh(gk) cosh(k(b+ z))

ε0D(k)
e−t/τ(k)dk (90)

E2(r, z, t) =
Q

2π

∫ ∞
0

k J0(kr)
sinh(bk) cosh(k(g − z))

ε0D(k)
e−t/τ(k)dk

with

τ(k) =
ε0
σ

(
εr +

tanh(bk)

tanh(gk)

)
τ(k =∞) =

ε0
σ

(εr + 1) = τ1 τ(k = 0) =
ε0
σ

(
εr +

b

g

)
= τ2 (91)

We see that the electric field is decaying to zero with a continuous distribution of time constants τ(k) in
a range between two specific geometrical cases discussed before.

Next we are interested in the case where a DC current I0 is ’impressed’ on the resistive plate at r = 0 (Fig.
9b) to find out how this current is then flowing through the resistive plate. The time dependent charge
due to I0 is then Q(t) = I0 t i.e. Q(s) = I0/s

2, so we have to replace Q in Eq. 89 by I0/s
2. Since we want

to know the stationary situation after a long time we want to know limt→∞E(r, z, t) = lims→0 sE(r, z, s)
and have the expressions

E1(r, z) = − I0
2πσ

∫ ∞
0

kJ0(kr)
cosh(k(b+ z)

cosh(bk)
dk (92)

E2(r, z) =
I0

2πσ

∫ ∞
0

kJ0(kr)
tanh(bk) cosh(k(g − z)

sinh(gk)
dk

First we note that E1 does not depend on g but depends only on the thickness b of the resistive layer.
This is evident from the fact that there is no DC current that can flow through the gas gap, so only the
geometry of the resistive layer is relevant. The current density i0(r) [A/cm2] flowing into the grounded
plate at z = −b is related to the field on the surface of the grounded plate by

i0(r) = −σE1(r, z = −b) =
I0
b2π

∫ ∞
0

1

2
J0

(
y
r

b

) y

cosh(y)
dy (93)

To evaluate this expression for small values of r we can insert the series expansion for J0(x) and evaluate
the integrals, which gives∫ ∞

0

1

2
J0

(
y
r

b

) y

cosh(y)
dy =

∞∑
m=0

(−1)m(2m+ 1)!

(m!)222m+1
[iLi2m+2(−i)− iLi2m+2(i)] r2m (94)

≈ 0.916 − 1.483
(r
b

)2
+ 1.873

(r
b

)4
− ... (95)
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where Lin(x) denotes the Polylogarithm function. For large values of r the radial dependence is expo-
nential (Section 9.1)∫ ∞

0

1

2
J0

(
y
r

b

) y

cosh(y)
dy =

π

2

∞∑
n=0

(−1)n(2n+ 1)K0

(
(2n+ 1)π

2

r

b

)
≈ π

2
√
r/b

e−πr/(2b) for
r

b
� 1

(96)
The current is plotted in Fig. 11a) and we see that for r/b > 2 the exponential approximation describes
the situation already to very high accuracy. The current I(r) flowing within a circle of radius r is given
by

I(r) =

∫ r

0

2rπi0(r′)dr′ = I0

[
1− 2

∞∑
n=0

(−1)n
r

b
K1

(
(2n+ 1)π

2

r

b

)]
(97)

where we have used the relation
∫ r
0
r′K0(r′)dr′ = 1− rK1(r). Fig.11b) shows this expression, and we see

that the radii within which 50/90/99% of the current a flowing are given by

r50% ≈ b r90% ≈ 2.3b r99% ≈ 3.9b (98)

For very large values of r → ∞ we have K1(ar) = 0 and I(r) = I0. Using Gauss’ Law
∮
ε ~Ed ~A = Q we

can calculate the total charge Q0 that is building up inside the RPC by integrating the electric field over
the surfaces of the metal plates at z = g,−b i.e.

Q0 = ε0

∫ ∞
0

2rπE3(r, g)dr − ε0εr
∫ ∞
0

2rπE1(r,−b)dr = I0τ2 (99)

Since the electric field has a discontinuity only at z = 0 this charge is sitting on the surface of the resistive
layer and the radial distribution is given by

q(r) = ε0E3(r, z = 0)− εrε0E1(r, z = 0) (100)

=
I0
2π

∫ ∞
0

kJ0(kr)
ε0
σ

(
εr +

tanh(bk)

tanh(gk)

)
dk =

I0
2π

∫ ∞
0

kJ0(kr) τ(k)dk

We can verify that the total charge on the surface
∫∞
0

2rπq(r)dr toQ0. Since τ(k →∞) = τ1 the integrand

of the above expression diverges, so by ’adding and subtracting’ τ1 and using
∫∞
0
kJ0(kr)dk = δ(r)/r we

have

q(r) =
I0
2π

[∫ ∞
0

kJ0(kr)τ1dk +

∫ ∞
0

kJ0(kr) (τ(k)− τ1)dk

]
(101)

= I0τ1
δ(r)

2rπ
+
I0
2π

∫ ∞
0

kJ0(kr) (τ(k)− τ1)dk

so we learn that at there is a point charge of value I0τ1 at the place where the current is put on the
surface and a distributed charge of value I0(τ2 − τ1) building up on the surface of the resistive plate. In
case of g = b there is only a point charge, for τ2 > τ1 i.e. for b > g the distributed charge has the same
sign as the point charge, while for b < g it has opposite charge.

4.3. Surface resistivity

It has been stated that the glass or Bakelite might develop a conductive surface once the electric
field is applied. In order to predict some measurable effect of such a conductive layer we investigate the
geometry shown in Fig. 12. We employ the formalism for a 3 layer geometry in Fig. 12a) and arrive at
the setting shown in Fig. 12b) by having

z0 = −b z1 = 0 z2 z3 = g ε1 = ε0εr + σ/s ε2 = ε0 + 1/(sRz2) ε3 = ε0 Q1 = 0 Q2 = I0/s
2

(102)
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Figure 11: a) Current density i0(r) at z = −b. The exact curve together with the 2nd order and 4th order approximation
from Eq. 94 and the exponential approximation from Eq. 96. b) Total current at z = −b flowing inside a radius r from Eq.
97.
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Figure 12: a) General 3 layer geometry with a point charge Q2. b) A resistive plate with conductivity σ together with an
(infinitely) thin layer of surface resistivity RΩ/square and an impressed current I0.

and performing the limit z2 → z1 = 0 to all the expressions, as well as the limit of lims→0 sfn(k, z, s) to
find the stationary situation for long times, which yields

f1(k, z) =
I0
σ

sinh(k(b+ z))

cosh(bk) + k/(Rσ) sinh(bk)
f3(k, z) =

I0
σ

sinh(bk) sinh(k(g − z))
sinh(gk)[cosh(bk) + k/(Rσ) sinh(bk)]

(103)

E1(r, z) = − I0
2πσ

∫ ∞
0

kJ0(kr)
cosh(k(b+ z)

cosh(bk) + k/(Rσ) sinh(bk)
dk (104)

E3(r, z) =
I0

2πσ

∫ ∞
0

kJ0(kr)
sinh(bk) cosh(k(g − z)

sinh(gk)[cosh(bk) + k/(Rσ) sinh(bk)]
dk

and the current i0(r) becomes

i0(r) = −σE1(r, z = −b) =
I0
b2π

∫ ∞
0

1

2
J0

(
y
r

b

) y

cosh(y) + y
β2 sinh(y)

dy β2 = Rσb (105)

In the limit of very high resistivity R → ∞ we recuperate the expression from the previous section
without any resistive surface layer. For low resistivity R < 1/(σb) → β2 � 1 the integral evaluates to
(Section 9.3)

i0(r) ≈ I0
b2π

β2

2

[
K0(β

r

b
) + 2

∞∑
m=1

(−1)mK0(mπ
r

b
)

]
≈ I0
b2π

β2

2
K0(β

r

b
) ≈ I0

b2π

β2

2

√
π

2

e−βr/b√
βr/b

(106)
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Comparing to Eq. 96 we see that the radial exponential decay of the current is not any more governed
by the the characteristic length 2b/π but by b/β. This becomes even more explicit by calculating the
current flowing through a circle of radius r, which is given by

I(r) =

∫ r

0

2rπi0(r′)dr′ ≈ I0
[
1− βr

b
K1

(
β
r

b

)]
(107)

which gives

r50% ≈ 1.26

√
b

Rσ
r90% ≈ 3.21

√
b

Rσ
r99% ≈ 5.77

√
b

Rσ
(108)

The lower the surface resistivity R the more the current is spread out radially, which can easily be pic-
tured: the low resistivity of the surface layer will result in currents flowing radially inside this thin layer,
and through the contact with the thick resistive layer to the bottom ground layer this spread is visible
there.

By using Gauss’ Law we can again calculate the total charge Q0 that is building up inside the RPC
and we find that it is equal to the case without the resistive layer and is given by Q0 = I0τ2.

4.4. Field of a charge disk
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b)
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σ c 

R Ω/☐ 

i0(r) 

Figure 13: a) A current impressed on a circular area of the resistive plate. b) A current impressed on the surface of a
resistive plate with a thin layer of surface resistivity R.

In this section we want to investigate the situation where the current is not placed on a single point
but extended over a disc of radius c. This represents the case where e.g. an RPC is illuminated by a
particle beam in a circular subsection of it’s surface. We first calculate the electric field for a disc of
charge with radius c, centred at the origin, with charge density q [pC/cm2] sitting on the resistive plate
as shown in Fig. 13a). We use f1(k, z) and f3(k, z) from Eq. 76 with z2 = 0 which recuperates the two
layer solution. We replace Q by the infinitesimal charge qr0dr0dφ0 sitting at point r0φ0, use Eq. 43 and

integrate by
∫ 2π

0
dφ0 and

∫ c
0
dr0. The integration over φ leaves only the term with m = 0 and for the r0

integration we use the relation
∫ c
0
r0J0(kr0) = cJ1(kc)/k which gives the result

E1(r, z) = −cq
∫ ∞
0

J0(kr)J1(kc)
sinh(gk) cosh(k(b+ z))

ε0D(k)
dk (109)

E3(r, z) = cq

∫ ∞
0

J0(kr)J1(kc)
sinh(bk) cosh(k(g − z))

ε0D(k)
dk (110)

In order to arrive at the solution for the situation shown in 13b) we proceed as outlined in the previous
section and using f1(k, z) and f3(k, z) from Eq. 103 we find

E1(r, z) = − i0
σ

∫ ∞
0

J0(kr)cJ1(kc)
cosh(k(b+ z)

cosh(bk) + k/(Rσ) sinh(bk)
dk (111)

E3(r, z) =
i0
σ

∫ ∞
0

J0(kr)cJ1(kc)
sinh(bk) cosh(k(g − z)

sinh(gk)[cosh(bk) + k/(Rσ) sinh(bk)]
dk (112)
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We first verify that by making the illuminated area infinitely large we find the expected electric fields for
uniform illumination. We use the relation

∫∞
0
rJ0(kr)dr = δ(k)/k which means that limc→∞ cJ1(kc) =

δ(k) and find

E0
1 = − i0

σ
E0

3 =
i0b

σg
=
i0b

g
ρ (113)

Using q(t) = i0t and therefore q(s) = i0/s
2 in Eq. 86 for the uniform charge q on the surface and

performing E(t → ∞) = lims→0 sE(s) we find back exactly the same field from above. E0
3 is the

’standard’ expression for the decrease of the electric field in an RPC due to the resistivity of the material.
Using Gauss’ Law as before we find the total charge density that is building up on the resistive surface
to be

qsurf = −ε0εrE0
1 + ε0E

0
2 = i0

ε0
σ

(
εr +

b

g

)
= i0 τ2 (114)

We finally evaluate the field E3(r, z) in the ’gas gap’ of an RPC for irradiation of a circular area of radius
c and relate it to the field E0

3 due to uniform illumination

E3(r, z)

E0
3

=
g

b

∫ ∞
0

c

b
J0

(
y
r

b

)
J1

(
y
c

b

) sinh(y) cosh(y g−zb )

sinh(y gb )[cosh(y) + y
β2 sinh(y)]

dk (115)

Figure 13a) shows the electric field inside the gas gap at z = g/2 for an illuminated disc of radius c = 10b.
For values of β = Rσb < 1, i.e. for small values of R the electric field in the gas gap due to the impressed
current is reduced since the current is distributed over a larger area of the resistive plate. It shows the
principle possibility to locally increase the rate capability of an RPC by a thin resistive layer that spreads
out the current through the resistive plate.

To approximate the electric field in the center of the disc i.e. at r = 0 we proceed in he following
way: in case the radius of the disc is larger than the thickness of the resistive plate we have c

b � 1 and
c
bJ1(y cb ) is close to δ(y) i.e only small values of y contribute to the integral. We can therefore expand the
expression for small values of y and have

E3(r = 0, z)

E0
3

≈
∫ ∞
0

c

b
J1

(
y
c

b

) 1

1 + y2

β2

dy = 1− β c
b
K1

(
β
c

b

)
(116)

For values of β cb � 1 we have

E3(r = 0, z)

E0
3

≈ 1− β c
b
K1

(
β
c

b

)
≈
(
β
c

b

)2 [
0.308− 1

2
ln
(
β
c

b

)]
(117)

The expressions are shown in Fig. 14b). Finally for completeness, the expression for the total current
I1(r) flowing into the ground plate ar z = −b within a radius r is given by

I1(r) = −
∫ r

0

2r′πσE1(r′, z = −b)dr′ = 2πb2I0

∫ ∞
0

1

y

r

b
J1

(
y
r

b

) c
b
J1

(
y
c

b

) 1

cosh(y) + y
β2 sinh(y)

dy (118)
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Figure 14: a) Electric field in the gas gap for values of β = ∞, 1, 0.2, 0.05. b) Values of the electric field in the gas gap
at r = 0 for different values of β c

b
. The the line approaching unity represents Eq. 116, the other one represents the

approximation of Eq. 117.
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5. Single thin resistive layer
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Figure 15: a) A resistive layer with surface resistance R [Ω/square]. b) The fields for this single layer can be calculated from
the indicated 3-layer geometry by performing the indicated limits of the expressions for z0, z2, z3.

In this section we want to study the fields of a single layer of surface resistivity R [Ω/square] at z = 0
where we place a charge Q at r = 0 at t = 0 as shown in Fig. 15a). We write Q(t) = QΘ(t) where Θ(t) is
the Heaviside step function. In the Laplace domain this reads as Q(s) = Q/s. The fields can be derived
from the 3-layer geometry shown in Fig. 15b) with

ε1 = ε0 ε2 = ε0 +
1

sz2R
ε3 = ε0 Q1 =

Q

s
Q2 = 0 (119)

and taking the appropriate limits

z0 → −∞ z1 = 0 z2 → 0 z3 →∞

Since we have shrunk layer 2 to zero thickness we only have the coefficients A1, B1 for the layer z < 0
and A3, B3 for the layer z > 0 and get

f1(k, z) =
QR

k + 2ε0Rs
ekz f2(k, z) =

QR

k + 2ε0Rs
e−kz (120)

In the time domain they read as

f1(k, z) =
Q

2ε0
e−k(vt−z) f2(k, z) =

Q

2ε0
e−k(vt+z) (121)

5.1. Infinitely extended resistive layer

First we investigate an infinitely extended layer as shown in Fig. 16a. The charge Q will cause
currents to flow inside the resistive layer that are ’destroying’ it. The solution for the potential is given
by

φ1(r, z, t) =
Q

4πε0

∫ ∞
0

J0(kr)e−k(vt−z) φ3(r, z, t) =
Q

4πε0

∫ ∞
0

J0(kr)e−k(vt+z) (122)

and using Eq. 13 this becomes

φ1(r, z, t) =
Q

4πε0

1√
r2 + (−z + vt)2

φ3(r, z, t) =
Q

4πε0

1√
r2 + (z + vt)2

(123)

We see that the potential due to the point charge placed on the infinitely extended resistive layer at t = 0
is equal to the potential of a charge Q that is moving with a velocity v = 1/2ε0R away from the layer
along the z−axis as indicated in Fig. 16b). As an example for a surface resistivity of R = 1 MΩ/square
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Figure 16: a) A point charge placed at an infinitely extended resistive layer at t = 0. b) The solution for the time dependent
potential is equal to a point charge moving with velocity v olong the z-axis.

the velocity is 5.6 cm/µs. The time dependent surface charge density q(r, t) on the resistive layer is
calculated through Gauss law as

q(r, t) = ε0
∂φ1
∂z
|z=0 − ε0

∂φ3
∂z
|z=0 (124)

which evaluates to

q(r, t) =
Q

2π

vt√
(r2 + v2t2)3

(125)

The total charge on the resistive surface Qtot =
∫∞
0

2rπq(r, t)dr is equal to Q at any time, as expected.
The peak and the FWHM of the charge density are given by

qmax =
Q

2π

1

v2t2
FWHM = 2(41/3 − 1)1/2 ≈ 1.53vt (126)

The charge is therefore ’diffusing’ with a velocity v, but does not assume a Gaussian shape as expected
from a diffusion effect but behaves as 1/r3 for large values of r. The total current I(r) flowing radially
through a circle of radius r is given by

I(r) =
2rπ

R
E(r) = −2rπ

R

∂φ1
∂r
|z=0 =

Qvr2

(r2 + v2t2)3/2
(127)

It is easily verified that the rate of change of the total charge inside a radius r i.e. dQr(t)/dt =
d/dt

∫ r
0

2r′πq(r′, t), dr′ is equal the the current I(r).
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5.2. Resistive layer grounded on a circle

a)

x 

y 

z 

Q*θ(t) 

q(x,y,t) 

R Ω/☐ 

I(t) 

r=c 

b) 0.0 0.5 1.0 1.5 2.0
t�T0.02

0.05

0.10

0.20

0.50

1.00

2.00
IHtL�H2Q�TL

Figure 17: a) A point charge placed in the center of a resistive layer that is grounded at r = c. b) Current I(t) flowing to
ground, where the straight line corresponds to the approximation from Eq. 131.

We now assume the geometry to be grounded at a radius r = c as shown in Fig. 17a. Using Eq. 46
with r0 = 0 we have the solution

φ1(r, z, t) =
Q

2πε0c

∞∑
l=1

J0(j0l
r
c )

j0lJ2
1 (j0l)

e−j0l(t/T−z/c) T = c/v (128)

and φ3(r, z, t) = φ1(r,−z, t). The charge inside the radius c is not a constant but it will disappear with
a characteristic time constant T = c/v by currents flowing into the ’grounded’ ring at r = c. As before
we can calculate the surface charge density and charge inside the radius r, which evaluate to

q(r, t) =
Q

c2π

∞∑
l=1

J0(j0lr/c)

J2
1 (j0l)

e−j0lt/T Qtot(t) = 2Q

∞∑
l=1

1

j0lJ1(j0l)
e−j0lt/T (129)

The current flowing into the ’grounded’ ring is then

I(t) = −dQtot
dt

=
2rπ

R
Er(r, t) =

2Q

T

∞∑
l=1

1

J1(j0l)
e−j0lt/T (130)

One can verify that the total amount of charge flowing to ground
∫∞
0
I(t)dt is equal to Q as required.

The current can be pictured to decay with an infinite number of time constants τl = T/j0l, so for long
times the largest one i.e. T/j01 ≈ 0.42T will dominate and the current decays as

I(t) ≈ 2Q

TJ1(j1)
e−j01t/T t� T (131)

The exact and approximate expressions for I(t) are shown in Fig. 17b.

5.3. Resistive layer grounded on a rectangle

Next we assume a rectangular grounded boundary at x = 0, x = a and y = 0, y = b and place a
charge Q at position x0, y0 at t = 0 as indicated in Fig. 18a). The potentials φ1 and φ3 are given by Eq.
47. Assuming the currents pointing to the outside of the boundary, the currents flowing through the 4
boundaries are

I1x = − 1

R

∫ b

0

−∂φ1
∂x
|x=0dy I2x =

1

R

∫ b

0

−∂φ1
∂x
|x=ady (132)
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Figure 18: a) A point charge placed on a resistive layer that is grounded on a rectangle. b) A point charge placed on a
resistive layer that is grounded on at x = 0 and x = a but insulated on the other borders.

I1y = − 1

R

∫ a

0

−∂φ1
∂x
|y=0dx I2y =

1

R

∫ a

0

−∂φ1
∂x
|y=bdx (133)

which evaluates to

I1x(t) =
4Qv

a2

∞∑
l=1

∞∑
m=1

l

m

1

klm
[1− (−1)m] sin

lπx0
a

sin
lπy0
b
e−klmvt (134)

I2x(t) =
4Qv

a2

∞∑
l=1

∞∑
m=1

l

m

1

klm
(−1)l [(−1)m − 1] sin

lπx0
a

sin
lπy0
b
e−klmvt (135)

I1y(t) =
4Qv

b2

∞∑
l=1

∞∑
m=1

m

l

1

klm

[
1− (−1)l

]
sin

lπx0
a

sin
lπy0
b
e−klmvt (136)

I2y(t) =
4Qv

b2

∞∑
l=1

∞∑
m=1

m

l

1

klm
(−1)m

[
(−1)l − 1

]
sin

lπx0
a

sin
lπy0
b
e−klmvt (137)

In case we want to know the total charge flowing through the grounded sides we have to integrate the
above expressions from t = 0 to ∞ which results in the same expressions and just e−klmvt replaced by
1/(klmv). These measured currents or charges can be used to find the position x0, y0 where the charge
q was deposited. This principle is e.g. applied in the MicroCAT detector [21]. As an example, Fig. 19
shows an evaluation of the above expressions for the total charges measured on the four sides for the
positions [x0, y0] = [(a/10, 2a/10, ..., 9a/10), (b/10, 2b/10, ..., 9b/10)] and using linear charge interpolation
to determine the position. This means that the figure represents the ’correction map’ to arrive at the
correct position from the linear interpolation of the measured charges.

5.4. Resistive layer grounded at ±a and insulated at ±b.
In case the resistive layer is grounded at x = 0, x = a and insulated at y = 0, y = b, as shown in Fig.

18b), the currents are only flowing into the grounded elements at x = 0 and x = a. We use Eq. 48 and
with some effort the summation can be achieved and evaluates to

I1x(t) = − 1

R

∫ b

0

−∂φ1
∂x
|x=0dy = − Q

πT

sin(π x0

a )

cosh( tT )− cos(π x0

a )
(138)

I2x(t) =
1

R

∫ b

0

−∂φ1
∂x
|x=ady = − Q

πT

sin(π x0

a )

cosh( tT ) + cos(π x0

a )
(139)
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Figure 19: Correction map for the case where the position of the charge is determined by linear interpolation between the
measured charges on the 4 boundaries of the geometry in Fig. 18a.

with T = 2aε0R
π = a

πv . For large times both expressions tend to

I1x(t) = I2x(t) ≈ −2Q

πT
sin
(
π
x0
a

)
e−t/T (140)

Fig. 20 shows the two currents for a charge deposit at position x0 = a/4 together with the asymptotic
expression from Eq. 140. The total charges q1 and q2 that are flowing through the grounded ends are
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Figure 20: Currents I1x(t) (top) and I2x(t) (bottom) for the geometry of Fig. 18b for x0 = a/4. The straight line in the
middle refers to the approximation from Eq. 140.

given by

q1 =

∫ ∞
0

I1x(t)dt = Q
a− x0
a

q2 =

∫ ∞
0

I2x(t)dt = Q
x0
a

(141)

so we learn that the charges are just shared in proportion to the distance from the grounded boundary,
equal to the resistive charge division.
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6. Resistive layer parallel to a grounded plane

In this section we want to study the fields and charges in a layer of surface resistivity R [Ω/square] at
z = 0 where we place a charge Q at r = 0 at t = 0 in presence of a grounded plane at z = −b as shown
in Fig. 21. The solution can again be derived from the 3-layer geometry with
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R Ω/☐ 

b 

b)
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ϕ2      ε2=ε0+1/sR(z2-z1) 
 
  ϕ1      ε1=ε0 
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z2        0 

Figure 21: a) A resistive layer with surface resistance R [Ω/square] in presence of a ground layer at distance b. b) The
fields for this geometry can be calculated from the 3-layer geometry by performing the indicated limits of the expressions
for z2, z3

ε1 = ε0 ε2 = ε0 +
1

sz2R
ε3 = ε0 Q1 =

Q

s
Q2 = 0

and taking the limits
z0 = −b z1 = 0 z2 → 0 z3 →∞ (142)

Since we have shrunk layer 2 to zero we only have the coefficients A1, B1 for the layer −b < z < 0 and
A3, B3 for the layer z > 0.

A1 =
QRekb

2D(k)
B1 = −QRe

−kb

2D(k)
A3 = 0 B3 = −QR sinh(kb)

D(k)
(143)

D(k) = k sinh(kb) + ekbε0Rs (144)

In the time domain they read as

A1 =
Q

2ε0
exp[−(1− e−2kb)kvt] B1 =

Q

2ε0
e−2kb exp[−(1− e−2kb)kvt] (145)

A3 = 0 B3 =
Q

2ε0
(1− e−2kb) exp[−(1− e−2kb)kvt] (146)

6.1. Infinitely extended geometry

Assuming an infinitely extended geometry, the time dependent charge density evaluates to

q(r, t) =
Q

b2π

1

2

∫ ∞
0

κJ0(κ
r

b
) exp

[
−κ(1− e−2κ)

t

T

]
dκ T =

b

v
= 2bε0R (147)

It can be verified that
∫∞
0

2rπq(r, t)dr = Q at any time. For long times i.e. large values of t/T , the
integrand contributes only for small values of κ and we can approximate the exponent by

− κ(1− e−2κ)
t

T
→ −2κ2

t

T
(148)
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Figure 22: a) A point charge Q placed on an infinitely extended resistive layer in presence of a grounded layer. b) In case
the ground plane is segmented, the time dependent charge distribution q(r, t) does induce charges on the strips.

and the integral evaluates to

q(r, t) =
Q

b2π

1

8t/T
e
− r2

8b2t/T (149)

We see that the charge distribution does assume a Gaussian shape for long times, in contrast to the
situation discussed in the previous section where the ground plane is absent. This fact can be understood
by investigating the equation defining this specific geometry: the current ~j(x, y, t) flowing inside the

resistive layer is related to the electric field ~E(x, y, t) in the resistive layer by ~j = ~E/R. The relation

between the current and the charge density q(x, y, t) is ~∇~j = −∂q/∂t. With ~E = −~∇φ we then get

∂q

∂t
=

1

R

(
∂2φ

∂x2
+
∂2φ

∂y2

)
(150)

If we set q = Cφ we get the diffusion equation

∂q

∂t
= h

(
∂2q

∂x2
+
∂2q

∂y2

)
h = 1/RC C =

ε0
b

(151)

where C is the capacitance per unit area between two metal plates at distance b. The solution of this
equation for a point charge Q put at r = 0, t = 0 evaluates exactly to the above Gaussian expression
from Eq. 149. This relation between voltage and charge(Q = CU) is however only a good approximation
if the charge distribution does not have a significant gradient over distances of the order of b. For small
times when the charge distribution is very peaked around zero this is certainly not a good approximation.
In Fig. 23 a) the charge distribution from Eq. 147 at time t = T is compared to the above Gaussian as
well as Eq. 125 for the geometry without a ground plane. We see that for small times the solution of the
diffusion equation does not work very well.

Equation 151 is often written in analogy of the one dimensional transmission line equation, which for
negligible transconductance G reads as

∂2V (x, t)

∂x2
= LC

∂2V (x, t)

∂t2
+RC

∂V (x, t)

∂t
(152)

In case ’LC∂/∂t� RC’, meaning that the RC time constant is much larger than the signal propagation
time along the transmission line, the equation is approximated as

∂2V (x, t)

∂x2
= RC

∂V (x, t)

∂t
(153)
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Figure 23: a) Charge distribution from Eq. 147 (top) compared to the Gaussian approximation for a time of t = T (bottom).
The middle curve that closely tracks the correct one is from Eq. 125 and refers to the geometry without grounded plate. b)
Induced charge on a strip of width b at position of x = 2b. The curve staring from zero refers to the Gaussian approximation.

which corresponds to the one dimensional diffusion equation. The transmission line equation is however
derived from the simplified ’lumped’ transmission line model, where a sequence of R,L,C elements is
assumed and the continuous limit is taken. It means that at any point x the relation between the voltage
V and the charge density q at this point is given by q = CV , which again is only a good approximation
when the gradient of the charge density is small over the transverse dimension of the transmission line.
The above equation for the one dimensional problem and Eq. 151 for the two dimensional problem are
therefore both bad approximations for times t < RC in case a point charge is placed somewhere in the
geometry.

The presence of the charge on the resistive layer induces a charge on the grounded metal plane. If
we assume that the metal plane is segmented into strips, as shown in Fig. 24b, we can calculate the
induced charge through the electric field on the surface of the plane. Assuming a strip centred at x = xp
with a width of w and infinite extension in y direction, we find the induced charge to

Qind(t) =

∫ xp+w/2

xp−w/2

∫ ∞
−∞
−ε0

∂φ1
∂z
|z=−b dydx (154)

which evaluates to

Qind(t) =
2Q

π

∫ ∞
0

1

κ
cos(κ

xp
b

) sin(κ
w

2b
) exp

[
−κ− κ(1− e−2κ)

t

T

]
dκ (155)

Approximating the integrand for large values of t/T as above, the expression evaluates to

Qind(t) =
Q

2

[
erf

(
2xp + w

4b
√

2t/T

)
− erf

(
2xp − w
4b
√

2t/T

)]
(156)

The same solution is found by using the relation of a capacitor where the ground plate should just carry
the charge density −q(x, y, t), with q(x, y, t) from Eq. 149, and integrating it over the strip area

Qind(t) =

∫ xp+w/2

xp−w/2

∫ ∞
−∞

q(x, y, t)dxdy (157)

Both expressions (Eq. 155 and Eq. 156) are shown in Fig. 23b. Although there are significant differences
at small times the curves approach each other for longer times when the charge distribution becomes
broad. The solutions still do not represent a detector signal due to the unphysical assumption that the
charge is created ’out of nowhere’ at t = 0. The correct signal on a strip due to a pair of charges ±Q
moving in a detector will be discussed in Section 8.
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6.2. Geometry grounded on circle
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Figure 24: b) The same geometry grounded at a radius r = c.

To conclude we assume the geometry to be grounded at r = 0 as shown in Fig. 24b. We proceed as
above and the charge Qtot inside the radius c is given by

Qtot(t) = 2Q

∞∑
l=1

1

j0lJ1(j0l)
exp

[
−j0l(1− e−2j0lb/c)

t

T

]
(158)

The charge disappears with and infinite number of time constants

τl =
T

j0l(1− e−2j0lb/c)
(159)

If the radius of the circle c is much larger than the distance b the longest time constant approximates to
τ1 ≈ T/j01 ≈ 0.42T which is equal to the case where no ground plane is present. In case c� b we have
τ1 ≈ 0.1T c/b, which tells us that the closer the resistive layer is to the grounded plane the slower the
charge will disappear.

7. Uniform currents on thin resistive layers

In this section we want to discuss the potentials that are created on thin resistive layers for uniform
charge deposition. In detectors like RPCs and Resistive Micromegas such resistive layers are used for
application of the high voltage and for spark protection. The resistivity must be chosen small enough to
ensure that potentials that are established on these layers due to charge-up are not influencing the applied
electric fields responsible for the proper detector operation. If such detectors are in an environment of
uniform particle irradiation the situation can be formulated by placing a uniform ’externally impressed’
current per unit area i0 [A/cm2] on the resistive layer. For illustration we use the example of a resistive
layer an absence of any grounded planes from Section 5. First we want to investigate the geometry
shown in Fig. 25a) where the layer is grounded on a circle at r = c. The charge dq placed on an
infinitesimal area at position r0, φ0 after time t is given by dq(t) = i0r0dr0dφ0t, or in the Laplace domain
dq(s) = i0r0dr0dφ0/s

2. We therefore have to replace Q/s in Eq. 119 by q(s), which results in

f1(k, z, s) =
i0
s

Rr0dr0dφ0
k + 2ε0Rs

ekz f2(k, z, s) =
i0
s

Rr0dr0dφ0
k + 2ε0Rs

e−kz (160)

Since we want to know the steady situation for long times i.e. for t → ∞ we f(k, z, t → ∞) =
lims→0 sf(k, z, s) and have

f1(k, z) =
Ri0r0dr0dφ0

k
ekz f2(k, z) =

Ri0r0dr0dφ0
k

e−kz (161)
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Figure 25: A uniform current ’impressed’ on the resistive layer will result in a potential distribution that depends strongly
on the boundary conditions. The 4 geometries shown in this figure are discussed.

Inserting this into Eq. 46 and integration over the area of the disk
∫ c
0
dr0

∫ 2π

0
dφ0 we find that only the

coefficients for m = 0 are different from zero and get

φ1(r, z) = φ3(r,−z) = 2c2Ri0

∞∑
l=1

J0(j0lr/c)

j30lJ1(j0l)
ej0lz/c (162)

For z = 0 i.e. on the surface of the resistive layer, the expression can be summed and we have

φ1(r, z = 0) = φ3(r, z = 0) =
1

4
Ri0(c2 − r2) (163)

This expression can also be derived in an elementary way: the total current on a disc of radius r i.e.
r2πi0, is equal to the total radial current flowing at radius r i.e. 2rπEr/R. This defines the radial field
inside the layer to Er = Ri0r/2. With the boundary condition φ(c) =

∫ c
0
Er(r)dr = 0 we find back the

above expression. The maximum potential is therefore in the centre of the disc and is equal to

φ(r = 0) =
c2πRi0

4π
=

1

4π
RItot ≈ 0.08RItot (164)

To find the potentials in the rectangular geometry of Fig. 25b we again have f1, f2 from Eq. 161 we just

have to replace r0dr0dφ0 by dx0dy0 and perform the integration
∫ a
0
dx0

∫ b
0
dy0 of Eq. 47, which results in

φ1(x, y, z) = φ3(x, y,−z) = abRi0
4

π4

∞∑
l=1

∞∑
m=1

[1− (−1)l][1− (−1)m] sin(lπx/a) sin(mπy/b)

l3mb/a+m3la/b
eklmz (165)

The expression cannot be written in closed form but converges quickly, so numerical evaluation is straight
forward. The peak of the potential can be found by setting dφ1/dx = 0, dφ1/dy = 0 and is found at
x = a/2, y = b/2, which is also evident by the symmetry of the geometry. The maximum potential on
the resistive layer is then

φmax = φ(a/2, b/2, z = 0) =
1

8
Ri0a

2b2
∞∑
l=1

∞∑
m=1

128

π4

(−1)l+m

b2(2l − 1)3(2m− 1) + a2(2m− 1)3(2l − 1)
(166)
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For a square geometry (b = a) the sum evaluates to ≈ 0.59 so the peak voltage in the center is

φmax ≈ 0.074Ri0a
2 = 0.074RItot (167)

We see that the value is only less than 10 % different from the peak voltage for the circular boundary in
Eq. 164.

For uniform illumination of the geometry Fig. 25c that is grounded at x = 0, a and insulated at y = 0, b
we use expression Eq. 48 and proceed as before and find

φ1(x, z) = φ3(x,−z) = 2Ri0a
2
∞∑
l=1

(1− (−1)l) sin(lπx/a)

l3π3
elπz/a (168)

The potential is is independent of y and for z = 0 the sum can be written inclosed form

φ1(x, z = 0) =
1

2
Ri0(ax− x2) φmax =

1

8
a2Ri0 (169)

Again this expression can be found in an elementary way by the fact that due to symmetry the currents
can only flow in x-direction and the current at x = a/2 must be zero. The total current arriving on the
area of x = a/2±∆x i.e. 2∆xbi0 is equal to the total current flowing at distance s i.e. 2E(s)/Rb. With
x = a/2 + ∆x we find back the above expression. The potential is therefore independent of b. For large
values of b/a the expression Eq. 165 must therefore approach the same value. Indeed for a/b = 0 the
sum evaluates to unity and the expression agree. From Fig. 26 we see that for an aspect ratio b/a = 4
the expressions agree already within 10 % of the

Finally, in case the layer is only grounded at x = 0 and all other boundaries are insulated, the max-
imum potential is at x = a and the results are

φ1(x) =
1

2
Ri0(2ax− x2) φmax =

1

2
Ri0a

2 (170)
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Figure 26: Ratio between the maximum potential of the geometry with 4 grounded edges and the geometry with 2 grounded
edges. For large values of b/a the ratio has to approach unity, and we see that already at b/a = 4 the expressions differ
only by 10%.
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8. Signals and charge spread in detectors with resistive elements
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Figure 27: Weighting field for a geometry with a resistive layer having a bulk resistivity of ρ = 1/σ[Ωcm] (left) and a
geometry with a thin resistive layer of value R [Ω/square] (right).

In this section we finally want to calculate the signals induced on a readout pad or readout strip in
presence of a resistive layer, either as a bulk resistive layer touching the readout structure (Fig. 27a)
or as a thin resistive layer that is insulated from the readout pads (Fig. 27b). The situation could e.g.
represent the geometry of a Micromegas detector with a resistive layer either for spark protection or for
charge spreading. We can picture the layer 0 < z < g as the amplification gap of such a device.

Following Section 3.3, the time dependent weighting fields for a pad of dimension wx and wy centred at
zero and an infinitely long strip of width wx centred at zero, can be written as

Ezw(x, y, z, t) =
Vw
g

4

π2

∫ ∞
0

∫ ∞
0

cos(kx
x

g
) sin(kx

wx
2g

) cos(ky
y

g
) sin(ky

wy
2g

)
h(k, z, t)

kxky
dkxdky (171)

Ezx(x, z) =
Vw
g

2

π

∫ ∞
0

cos(k
x

g
) sin(k

wx
2g

)
h(k, z, t)

k
dk (172)

for both geometries. They are discussed in the next sections.
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8.1. Layer with bulk resistivity

If the layer has a bulk resistivity of ρ = 1/σ (Fig. 27a) the expression for h(k, z) is (0 < z < g) is

h(k, z, t) = k cosh(k(1− z

g
))

[
εrδ(t)

D(k)
+

1

τ0
b1(k)e−

t
τ0
f1(k)

]
(173)

D(k) = sinh(k
b

g
) cosh(k) + εr cosh(k

b

g
) sinh(k) (174)

b1(k) =
sinh(k bg ) cosh(k)

D(k)2
f1(k) =

sinh(k) cosh(k bg )

D(k)
(175)

with τ0 = ε0/σ = ε0ρ. We investigate the geometry where the ground plane at z = −b is segmented
into infinitely long strips of width wx (Fig. 27c). We also assume a pair of charges Q,−Q produced at
t = 0 at z = 0, the charge Q does not move and the charge −Q moves from z = 0 to z = g with uniform
velocity v i.e. z(t) = vt = g t/T , 0 < t < T , T = g/v (Fig. 27e). The current is then calculated to

I(t) = −−Q
Vw

∫ t

0

Ew(x, z(t′), t− t′)ż(t′)dt′ =
Q

Vw

∫ t

0

Ew(x, g t′/T, t− t′)g/Tdt′ t < T (176)

I(t) = −−Q
Vw

∫ T

0

Ew(x, z(t′), t− t′)ż(t′)dt′ =
Q

Vw

∫ T

0

Ew(x, g t′/T, t− t′)g/Tdt′ t > T (177)

This results in

I(t < T ) =
Q

T

∫ ∞
0

2

π
cos(k

x

g
) sin(k

wx
2g

)× [
εr cosh(k − k tT )

D(k)
(178)

+b1
e−

t
τ0
f1(f1 cosh(k) + τ0

T k sinh(k))− f1 cosh(k − k tT )− k τ0T sinh(k − k tT )

k2
τ2
0

T 2 − f21
]dk

I(t > T ) =
Q

T

∫ ∞
0

2

π
cos(k

x

g
) sin(k

wx
2g

)b1 e
− t−Tτ0 f1 e

− T
τ0
f1(f1 cosh(k) + k τ0T sinh(k))− f1

k2
τ2
0

T 2 − f21
(179)

In the limiting case of very high resistivity i.e. τ0 →∞ the layer represents and insulator and we find

lim
τ0→∞

I(t < T ) =
Q

T

∫ ∞
0

2

π
cos(k

x

g
) sin(k

wx
2g

)
εr cosh(k − k tT )

D(k)
dk lim

τ0→∞
I(t > T ) = 0 (180)

For the case where the layer represents a perfect conductor the expression becomes

lim
τ0→0

I(t < T ) =
Q

T

∫ ∞
0

2

π
cos(k

x

g
) sin(k

wx
2g

)
cosh(k − k tT )

sinh(k) cosh(k bg )
dk lim

τ0→0
I(t > T ) = 0 (181)

This last expression is correct if the strips are truly grounded. For any realistic setup where the strips are
connected to readout electronics and therefore have a finite resistance to ground, the signal will spread
to all the strips since the strips together with the bulk behave as one single node. The result is therefore
correct only to levels of conductivity σ where the impedance between the strips is significantly larger than
the input resistance of the amplifier. If this is not the case, the impedance matrix of the strips has to be
calculated and current signal I(t) has to be placed on the full network to evaluate the signals [14]. Figures
28, 29, 30 show the induced current signals given above on a central strip of width wx = 4g and the
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first neighbouring strip centred at x = 4g for different values of conductivity, i.e. for different time con-
stants τ0. The figures show in dashed lines also the limiting cases for very large and very small values of τ0.

First we observe that all signals are unipolar, which is due to the fact that the charge that is flow-
ing in the resistive bulk layer in order to compensate the charge −Q sitting on the surface of the resistive
plate, is truly coming out of the readout strips. In case the time T of charge movement is equal to the
time constant τ0 (Fig. 29), the signal is significantly affected and develops a long tail for t > T due
to the flow of charge compensating the point charge on the surface. The smaller the conductivity, the
longer (but smaller) is the tail of the signal as shown in Fig. 28 for τ0 = 10T . For short time constants
of the resistive layer the signal on the central strip is large and has a short tail, and the crosstalk to the
neighbour strips increases as shown in Fig. 30 for τ0 = 0.1T . For completeness we give the results for
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Figure 28: Uniform charge movement from z = 0 to z = g, with εr = 1, wx = 4g, b = g, τ0 = 10T for a)x = 0 and b) x = 4g.
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Figure 29: Uniform charge movement from z = 0 to z = g, with εr = 1, wx = 4g, b = g, τ0 = T for a)x = 0 and b) x = 4g.
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Figure 30: Uniform charge movement from z = 0 to z = g, with εr = 1, wx = 4g, b = g, τ0 = 0.1T for a)x = 0 and b)
x = 4g.
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the case where the pair of charges Q,−Q is created at z = g and the charge Q is moving from z = g to
z = 0 with uniform velocity during a time T .

I(t < T ) =
Q

T

∫ ∞
0

2

π
cos(k

x

g
) sin(k

wx
2g

)

[
εr cosh(k tT )

D(k)
+ b1

f1e
− t
τ0
f1 − f1 cosh(k tT ) + k τ0T sinh(k tT )

k2
τ2
0

T 2 − f21

]
dk(182)

I(t > T ) =
Q

T

∫ ∞
0

2

π
cos(k

x

g
) sin(k

wx
2g

)b1 e
− t−Tτ0 f1 f1e

− T
τ0
f1 − f1 cosh(k) + k τ0T sinh(k)

k2
τ2
0

T 2 − f21
dk (183)

In the limiting case of very high resistivity i.e. τ0 →∞ the layer represents an insulator and we find

lim
τ0→∞

I(t < T ) =
Q

T

∫ ∞
0

2

π
cos(k

x

g
) sin(k

wx
2g

)
εr cosh(k tT )

D(k)
dk lim

τ0→∞
I(t > T ) = 0 (184)

In the limiting case where the resistivity is zero i.e. τ0 → 0 the layer represents a perfect conductor we
have

lim
τ0→0

I(t < T ) =
Q

T

∫ ∞
0

2

π
cos(k

x

g
) sin(k

wx
2g

)
cosh(k tT )

sinh(k) cosh(k bg )
dk lim

τ0→0
I(t > T ) = 0 (185)

8.2. Layer with surface resistivity

We now turn to the example where there is only a thin layer of surface resistivity R on top of an
insulating layer (Fig.27b,d,f). The expression for h(k, z) is (0 < z < g) is

h(k, z, t) = k cosh(k(1− z

g
))

(
εrδ(t)

D(k)
− 1

T0
b2(k)e−

t
T0
f2(k)

)
(186)

b2(k) = k
εr sinh(k bg ) sinh(k)

D(k)2
f2(k) = k

sinh(k) sinh(k bg )

D(k)
(187)

where T0 = ε0Rg is the ’time constant associated with the resistive layer’ in the given geometry. For the
case discussed before, where the pair of charges Q,−Q is created at t = 0 and Q then moves at uniform
speed from z = 0 to z = g during a time T , we find

I(t < T ) =
Q

T

∫ ∞
0

2

π
cos(k

x

g
) sin(k

wx
2g

)× [
εr cosh(k − k tT )

D(k)

−b2
e−

t
T0
f2(f2 cosh(k) + T0

T k sinh(k))− f2 cosh(k − k tT )− k T0

T sinh(k − k tT )

k2
T 2
0

T 2 − f22
]dk (188)

I(t > T ) =
Q

T

∫ ∞
0

2

π
cos(k

x

g
) sin(k

wx
2g

)b2 e
− t−TT0 f1 e

− T
T0
f1(f1 cosh(k) + k T0

T sinh(k))− f1
k2

T 2
0

T 2 − f21
(189)

The limiting case for very high resistivity is equal to the expression from the previous section where there
is only an insulating layer. In the limiting case for very small resistance R, I(t) becomes zero since the
resistive layer turns into a ’metal plane’ that shields the strips from the charges Q,−Q.

The signals for a central strip of width wx = 4g as well as the neighbouring strips at x = 4g and
x = 8g as shown in Figures 31-35 for different values of the resistivity R i.e. for different time constants
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T0. In case the time constant T0 is large, the effect of the resistivity disappears and the case of T0 = 10T
in Fig. 31 shows signal shapes very close to the on from the previous section for large values of τ0. For
decreasing resistivity, and therefore T0, we see however that the signal on the central strip starts to be
’differentiated’ and develops an undershoot and the crosstalk to the other strips increases.

Since for Eq. 186 it holds that
∫∞
0
h(k, z, t)dt = 0, all of the signals are strictly bipolar i.e.

∫∞
0
I(t)dt = 0.

This is due to the fact that the current compensating the point charge −Q is entirely flowing inside the
thin resistive layer and no net charge is taken from or is arriving at the strips. Finally, the induced
current for the movement of the charge from z = g to z = 0 is

I(t < T ) =
Q

T

∫ ∞
0

2

π
cos(k

x

g
) sin(k

wx
2g

)×[
εr cosh(k tT )

D(k)
− b2

f2e
− t
T0
f2 − f2 cosh(k tT ) + k T0

T sinh(k tT )

k2
T 2
0

T 2 − f22

]
dk (190)

I(t > T ) = − Q

T

∫ ∞
0

2

π
cos(k

x

g
) sin(k

wx
2g

)b2 e
− t−TT0 f2 f2e

− T
T0
f2 − f2 cosh(k) + k T0

T sinh(k)

k2
T 2
0

T 2 − f22
dk (191)
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Figure 31: εr = 1, wx = 4g, b = g, T0 = 10T for x = 0, x = 4g, x = 8g
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Figure 32: εr = 1, wx = 4g, b = g, T0 = T for x = 0, x = 4g, x = 8g
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Figure 33: εr = 1, wx = 4g, b = g, T0 = 0.1T for x = 0, x = 4g, x = 8g
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Figure 34: εr = 1, wx = 4g, b = g, T0 = 0.01T for x = 0, x = 4g, x = 8g
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Figure 35: εr = 1, wx = 4g, b = g, T0 = 0.001T for x = 0, x = 4g, x = 8g
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9. Integrals with Bessel Functions

All solutions of the unbounded multilayer problem are expressed in the form∫ ∞
0

Jn(rx)g(x)dx r > 0 (192)

To evaluate this integral with the method of residues we have to find a proper closed contour in the
complex plane. Since Jn(z) is exponentially increasing for large imaginary values, there is no closed

contour in the complex plane where the integral vanishes. The Hankel functions H
(1)
n (z) = Jn(z)+ iYn(z)

are however exponentially decreasing for large positive imaginary values, so we can use a semi-circle in
the upper complex half-plane. We use the following trick established in [20]:∫ ∞

−∞
Hn(rx)g(x)dx =

∮
C

Hn(rz)g(z)dz = 2πi
∑
m

resm = a+ bi (193)

where C is a closed contour from x = −R,R and a semi-circle of radius R in the upper complex plane
over which the integral vanishes for R → ∞. The values resm indicate the residuals of the expression
Hn(rz)g(z) for all poles of zm of g(z) in the upper complex plane i.e. for Im[z] > 0. With the identities

Jn(x) = (−1)nJn(−x) Re[Yn(−x)] = (−1)nYn(x) Im[Yn(−x)] = 2Jn(−x) (194)

we find∫ ∞
−∞

Hn(rx)g(x)dx =

∫ ∞
0

Jn(rx)[g(x)− (−1)ng(−x)]dx+ i

∫ ∞
0

Yn(rx)[g(x) + (−1)ng(−x)]dx

so for g(x) = g(−x) with n being uneven, or g(x) = −g(−x) with n being even we have the result∫ ∞
0

Jn(rx)g(x)dx =
a

2
(195)

In the following we will make frequent use of the identity

Kn(x) =
π

2
in+1H(1)

n (ix) (196)

where Kn(x) denote the modified Bessel functions of second kind [17].

9.1. Integral 1 ∫ ∞
0

J0(rx)
x

cosh(x)
dx (197)

The expression has an infinite number of poles in the upper complex half-plane at zm = i (2m + 1)π/2
with m = 0...∞, and the residues are

2πi

∞∑
m=0

lim
z→zm

[
(z − zm)H0(rz)

z

cosh(z)

]
=

∞∑
m=0

π2(−1)m(2m+ 1)iH0[ir(2m+ 1)π/2]

=

∞∑
m=0

2π(−1)m(2m+ 1)K0[r(2m+ 1)π/2] = a
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and we have the result∫ ∞
0

J0(rx)
x

cosh(x)
dx = π

∞∑
m=0

(−1)m(2m+ 1)K0[r(2m+ 1)π/2] (198)

With the exponential behaviour of the K0(r) the expression is well suited for evaluation for large values
of r, for small values of r the solution does however converge only slowly and for r = 0 it even diverges.
For small values of r another evaluation is suited:

1

cosh(x)
=

2e−x

1 + e−2x
= 2

∞∑
m=0

(−1)m e−(2m+1)x (199)

and using ∫ ∞
0

xJ0(rx) e−axdx =
a

(a2 + r2)3/2
(200)

we have ∫ ∞
0

J0(rx)
x

cosh(x)
dx = 2

∞∑
m=0

(−1)m
2m+ 1

[(2m+ 1)2 + r2]3/2
(201)

This expression is very closely related to the method of images discussed in Section 3.

9.2. Integral 2 ∫ ∞
0

J0(rx)
sinh(a1x) sinh(a2x)

sinh(x)
dx (202)

The poles are at zm = imπ for m = 1...∞, so the residuals are given by

2πi

∞∑
m=1

lim
z→km

[
(z − zm)H0(rz)

sinh(a1z) sinh(a2z)

sinh(z)

]
(203)

= −4

∞∑
m=1

(−1)m sin(a1mπ) sin(a2mπ)K0(mπr) = a (204)

9.3. Integral 3 ∫ ∞
0

J0(rx)
x

cosh(x) + x
β2 sinh(x)

dx (205)

The expression cosh(z) + z sinh(z)/β2 has zeroes only on the imaginary axis, so writing z = iy we have
to solve

cosh(iy) +
iy

β2
sinh(iy) = 0 → tan(y) =

β2

y
(206)

Plotting the two functions tan(y) and β2/y on top of each other it is evident that for β2 > 0 the zeroes
yn satisfy the condition

0 < y0 <
π

2
π < y1 <

3π

2
2π < y2 <

5π

2
... nπ < yn < nπ +

π

2
(207)

and that for β2 � 1 the yn approach the values

y0 = β yn = nπ → z0 = iβ zn = inπ (208)
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For β � 1 we have

lim
z→iβ

(z − iβ)

cosh(z) + z
β2 sinh(z)

≈ − iβ
2

lim
z→inπ

(z − inπ)

cosh(z) + z
β2 sinh(z)

≈ −(−1)n
iβ2

nπ
(209)

2πi

∞∑
m=0

lim
z→zm

(z − zm)H0(rz)
z

cosh(z) + z
β2 sinh(z)

≈ 2β2

[
K0(βr) + 2

∞∑
m=1

(−1)mK0(mπr)

]
= a (210)

so we have for β2 � 1 the result∫ ∞
0

J0(rx)
x

cosh(x) + x
β2 sinh(x)

dx ≈ β2

[
K0(βr) + 2

∞∑
m=1

(−1)mK0(mπr)

]
(211)
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