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Quasistatic Approximation
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Point charge in a double layer

 4 equations that define A1, B1, A2, B2
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Point charge in a double layer

Expressing the solution as a point charge with a correction term:
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Point charges in a geometry with N dielectric layers

a)

a)

b)

c)

d) 
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Point charges in a geometry with N dielectric layers

Inclusion of resistivity:
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Weighting fields in a geometry with N dielectric layers

Pixel:

Strip:

Plane:
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Examples
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Single Gap RPC
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Single Gap RPC
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Single Gap RPC
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Single Gap RPC, increasing rate capability by a surface R
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Infinitely extended thin resistive layer
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Infinitely extended resistive layer

A point charge Q is placed on 
an infinitely extended resistive 
layer with surface resistivity of 
R Ohms/square at t=0.

What is the charge distribution 
at time t>0 ?

Note that this is not governed 
by any diffusion equation.

The solution is far from a 
Gaussian.

The timescale is giverned by 
the velocity v=1/(2ε0R)
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Resistive layer grounded on a circle

A point charge Q is placed on a 
resistive layer with surface 
resistivity of R Ohms/square 
that is grounded on a circle

What is the charge distribution 
at time t>0 ?

Note that this is not governed 
by any diffusion equation.

The solution is far from a 
Gaussian.

The charge disappears 
‘exponentially’ with a time 
constant of T=c/v (c is the 
radius of the ring)
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Resistive layer grounded on a rectangle

A point charge Q is placed on a 
resistive layer with surface 
resistivity of R Ohms/square 
that is grounded on 4 edges

What are the currents induced 
on these grounded edges for 
time t>0 ?



Werner Riegler, CERN 20

Resistive layer grounded on two sides and insulated on the other

A point charge Q is placed on 
a resistive layer with surface 
resistivity of R Ohms/square 
that is grounded on 2 edges 
and insulated on the other 
two.

What are the currents induced 
on these grounded edges for 
time t>0 ?

The currents are monotonic.

Both of the currents approach 
exponential shape with a time 
constant T.

The measured total charges 
satisfy the simple resistive 
charge division formulas. 

Possibility of position measurement in RPC and Micromegas
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Uniform currents on resistive layers

Uniform illumination of the resistive 
layers results in ‘chargeup’ and related 
potentials.
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Infinitely extended resistive layer with parallel ground plane

A point charge Q is placed on an infinitely 
extended resistive layer with surface resistivity of 
R Ohms/square and a parallel ground plane at t=0.

What is the charge distribution at time t>0 ?

This process is in principle NOT governed by the 
diffusion equation.

In practice is is governed by the diffusion equation 
for long times.

Charge distribution at t=T
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Infinitely extended resistive layer with parallel ground plane

What are the charges induced 
metallic readout electrodes by 
this charge distribution?

Gaussian approximation

Exact solution
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Charge spread in e.g. a Micromega with bulk or surface resistivity

Micromega Mesh

Avalanche region

Bulk
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ε0 

ε1, σ

Q -Qv

I(t) I(t)

Zero Resistivity

Infinite Resistivity (insulator)

g

All signals are unipolar since the charge 
that compensates Q sitting on the surface 
is flowing from all the strips. 

Charge spread in e.g. a Micromega 
with bulk resistivity
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ε0 

ε1 

Q -Qv

I(t) I(t)

R g

Zero Resistivity

Infinite Resistivity (insulator)

All signals are bipolar since the charge 
that compensates Q sitting on the surface 
is not flowing from the strips.

Charge spread in e.g. a Micromega 
with surface resistivity
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Summary

Fields and signals for detectors with a multilayer geometry and 
containing weakly conducting materials can be calculated with the 
presented formalism.

Charge spread, the path of currents, charge-up, signals, crosstalk 
can be studied in detail.

The examples can also be used a accurate benchmarks for 
simulation programs that calculate these geometries numerically.


