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Abstract

In this report we discuss static and time dependent electric fields in detector geometries with an
arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green’s
functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout
strips in these geometries. The effect of "bulk’ resistivity on electric fields and signals is investigated. The
spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the
effect to be described by the diffusion equation is discussed. We apply the results to derive fields and
induced signals in Resistive Plate Chambers, Micromega detectors including resistive layers for charge
spreading and discharge protection as well as detectors using resistive charge division readout like the
MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase
crosstalk between readout electrodes.
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Quasistatic Approximation

equations: Knowing the solution of the Poisson equation for a charge distribution p(Z) embedded in
a geometry of a given permittivity £(Z), we find the time dependent solution (in the Laplace domain
with parameter s) for an ’externally impressed’ charge density p.(Z,s) and a geometry that in addition
includes a finite (weak) conductivity o(F) by replacing () with £(7) + o(Z) /s and p(F) with p.(T, s).
For detector applications the volume resistivity p(x) = 1/o(Z) is traditionally used.

As an example we look at the potential of a point charge ) in a medium of constant permittivity e,
which is given by
Q

= 1
Blr) = (1)
In case the medium has a conductivity ¢ and we place the ’external’ charge @ at t = 0, i.e. Q(t) = QO(t)

and therefore Q(s) = Qp/s, we replace € by £ + o/s and @ by (/s and perform the inverse Laplace
transform, which gives

Hrs) =t o Hnt) = o et T=clo=pe @)
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Point charge in a double layer

n Z=g 1 o0
% & | a . ba(r, 2) = %L To(kr) [A(R)e™ + By(R)e ™™ dk  —b<z<0
...................... - 25
g | e
¢ & : b ba(ryz) = 5 ] To(kr) [Aa(k)e™ + By(k)e™] dk l<z<g
0

z = —b and z = g define the conditions ¢,(—b,r) = 0 and ¢2(g,r) = 0, which gives

Are™ £ Bie® = 0

Age® £ Bye ™9 = 0
¢1(r,0) = do(r.0) which gives

A +B1=A>+ B>

and the eE component perpendicular to the sheet *jumps’ by g(r)

O (r, =z Odol(r, z
UL LG @

The surface charge density corresponding to the point charge @ at r = 0 is g(r) = Q4(r)/27r, so this
last equation reads as

% fﬁm Jo(kr)k [e1(A; — By) — e9(Ag — By)] dk = %a‘m

Multiplying both sides of the equation with rJp(%'r), integrating them over r from 0 to oo and using the
relation fﬂm rJo(kr)Jo(K'r)dr = 6(k — k') /k [18] we have

g1(A1 — By) —2(A2 — Ba) = Q (8)

- 4 equations that define A, B, A,, B,



Point charge in a double layer

z=g
£ :
........ ¢ %-----?.-___i_c_}_______..--------_. z=0
¢ &
': z=b
x=y=r=0
D(k) = 4[=, cosh(bk) sinh(gk) + €2 sinh(bk) cosh(gk)] (10)

The solutions then read as

@ [ 4sinh(gk)sinh(k(b+ z))
bi(r7) = = [U Jo(kr) s ik —b<z<0 (11)
, o Q [~ 4 sinh(bk) sinh(k(g — z))
bolr, 2) = EL Jo(kr) 5 ik O<z<g (12)

Expressing the solution as a point charge with a correction term:

ekz 4 sinh(gk) sinh(k(b + z)) ekz k=

+ = + f1lk,
g1+ E2 D[kj g1+ &9 £1+ &9 fl{ Zjl

and arrive with Eq. [13]at

. _ Q 1 QR [T
II_.D‘]_[T, .2'} - 2’:‘1’{51 +52} m + g/ﬂ Jﬂ{kr}fl[k,z}dk
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Fig. 1. (a) Point charge Q between two grounded metal planes. (b) Readout pad or pixel of dimension w, and w, centred at the origin.
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Fig. 1. (a) Point charge Q between two grounded metal planes. (b) Readout pad or pixel of dimension w, and wy, centred at the origin.
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Point charges in a geometry with N dielectric layers

Figure 3: Left: A geometry of N dielectric layers enclosed by grounded metal plates. On the boundary between two layers
at » = 0 there are point charges (,,. Right: Different boundary conditions in the x-y plane.
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Point charges in a geometry with N dielectric layers

fﬂ(k:z):AﬂEkz +Bn€_kz n=1.N

The 2N coefficients A, (k) and B,(k) are defined by the two conditions at the grounded plates and
at the 2(IN — 1) conditions at the N — 1 dielectric interfaces

AjeF® L Bie7k0 =0 Apne**™N L Bye RN =0 (49)
Ane*® 4+ Bpe * = A€ + Bpyem R

kz —k=z k=z —k=z

Inclusion of resistivity:

p=1/s [Qcm] Lﬂ b : f
R [Q/g]
a) |

Figure 5: a) A block of material with volume resistivity p[f2cm]. b) A thin sheet of material with surface resisitivity
R [$2/square].

The resistance represented by the resistive sheet in Fig. is given by Ra/b. We can therefore conclude
that for layers that have finite conductivity o, = 1/p,,, where p,, represents the volume resistivity of the
layer, we find the fields in the Laplace domain by replacing £,, by £, +1/(pns) in all expressions. In case
we want a specific layer m i.e. z,_1 < z < z, to represent a thin sheet of a given surface resistivity
R [Q/square], we have to replace £, of this layer by

1
(zm - zm—l]RS

In case we want to make this layer infinitely thin we have to perform the limit lim, _,. _ ¢, for all
expressions.

Em = Em 4+ (66)



Weighting fields in a geometry with N dielectric layers
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Figure 6: a) Point charge in a N layer geometry. b) Potential ¢,, due to a rectangular pad at potential of V3,. ¢) Potential

a)

dyy due to an infinitely extended strip at potential V5,

: . w cos(k,x) sin(kzw, /2) cos(kyy) sin(kyw, /2)
Plxel' ¢n(I:y1zj — ElEF / k k
x [Al (k,zn41 = z)ﬁkzu — Bi(k, zn41 = z)e—kzu} dkgdk, (70)

For the case of an infinitely long strip, i.e. w, — oo we change variables to s, = kyw,/2, let w, — oo
and use [ sin(s,)/s,ds, = 7/2 which gives

Strip: 60 (z,2) = El%% £ * cos(kz) Sik“(k‘”-“*’! 2 ¢ [As(ky zmgs = 265 — By(k, znsy = 2)e ) dk (71)

In case also w, goes to infinity we have the weighting potential of the entire electrode which becomes

Plane: ¢ (2) 251%[141(&:[:',2“1 =z) = Bi(k=0,zp41 = 2)] (72)
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Examples
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Single Gap RPC

ryz) = ) 1 - o(kr _ ok, 2 _ie—k{zz—ﬂ_
s = e AR FACOR> | e
T, z) = @ 1 - r _ z _ie—kfz—znl_
bulr ) = e g [ o) |tk 2) - o | ax
fi(k,z) = Qsinh(k(b+ 2))sinh(k(g — z2))/(e0D(k))
falk,z) = Q@sinh(k(g — z2))[sinh(bk) cosh(kz) + &, cosh(bk) sinh(kz)] /(0 D(k))
falk,z) = @Qsinh(k(g — z))[sinh(bk) cosh(kzz) + &, cosh(bk) sinh(k=z2)]|/(coD(k))

with
D(k) = sinh(bk) cosh(gk) + =, cosh(bk) sinh(gk)
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Single Gap RPC
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Figure 8: a) Weighting field E. at position z = g/2 for b = 4g and w, = 20g. The three curves represent =, = 1 (bottom),
gr = 8 (middle) and £, = oc (top). b) Normalized weighting field for the same geometry with w, = g for =, = 1(inner),
£y = 8 (middle) and £, = oo (outer). 13



Single Gap RPC
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Figure 11: a) Current density in(r) at z = —b. The exact curve together with the 2" order and 4*® order approximation

from Eq. and the exponential approximation from Eq. b) Total current at z = —b flowing inside a radius r from Eq.
@7
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Single Gap RPC, increasing rate capability by a surface R
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Infinitely extended thin resistive layer

z ]
b3 €37, L Q,=0
Y z
b, | €2=€p+1/sR(2,-2¢) j
aen X ¥a=a
£4=E |
RO/ b &7 :
a) b) ;

Z;=

z—» 0
z,=0

Zy="

Figure 15: a) A resistive layer with surface resistance R [{}/square|. b) The fields for this single layer can be calculated from

the indicated 3-layer geometry by performing the indicated limits of the expressions for zp, 20, z3.
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Infinitely extended resistive layer

First we investigate an infinitely extended layer as shown in Fig. 12a. The charge Q will cause

B Z
r g Q(X:Yst) y y
g
yd
°!
\

e
e Q*e(t) it
/
Figure 12: a) A point charge placed at an infinitely extended resistive layer at ¢ = 0. b) The solution for the time dependent
potential is equal to a point charge moving with velocity v olong the z-axis.

@3(x,y,z,t) for z>0

e
RO
a) - b)

Q 1 Q 1
¢'3 (T! Z, t) =
ameg /12 + (—z + vt)? dmen /T2 + (z + vt)?

‘;bl(?‘az:t) = (111)

We therefore conclude that the field due to a point charge placed on an infinite resistive layer at t = 0 is

equal to the field of a charge @ that is moving with a velocity v = 1/2¢9 R §way from the layer along the

z—axis. As an example for a surface resistivity of R = 1 M£}/square the velocity is 5.6 cm/ps.
The time dependent surface charge density on the resistive surface is given by

a o
q(r,t) = &0 %lz:ﬂ — €0 % |2=0 (112)
which evaluates to 0 ;
v
=2 113
q(rt) = 5 GRS (113)

The total charge on the resistive surface Qo = fnoo 2rmq(r,t)dr is equal to @ at any time. The peak and
the FWHM of the charge density are given by

Q 1
2 v2t2

The charge is therefore ’diffusing’ with a velocity v, and does not assume a gaussian shape as expected
from a diffusion effect but has 1/r° tails for large values of 7. The radial current I(r) at distance r are
given by

FWHM = 2(4*% —1)Y/2 ~ 1.530t (114)

Qmaz =

2rm 2rm O¢y Qur?
I =gy = TP, QU 115
(r) R (r) R or -0 (r2 + v2£2)3/2 (115)
It is easily verified that the rate of change of the total charge inside a radius r ie. dQ,(t)/dt =

d/dt [; 2r'mq(r’,t),dr’ is equal the the current I(r).

A point charge Q is placed on
an infinitely extended resistive
layer with surface resistivity of
R Ohms/square at t=0.

What is the charge distribution
at time t>0 ?

Note that this is not governed
by any diffusion equation.

The solution is far from a
Gaussian.

The timescale is giverned by
the velocity v=1/(2¢,R)
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Resistive layer grounded on a circle

If we now assume the geometry to be grounded at a radius r = ¢ as shown in Fig, 13a, we use Eq. 41
with g = 0 and have the solution

Jo( j‘m ;
t) e—Jou(t/T—z/c) T = 116
¢1 T2 2 2’J‘TEQC Z JOI'] jm C/'U ( )

and ¢3(r, z,t) = ¢1(r, —2,t). The charge inside the radius ¢ is not a constant but it will disappear with
a characteristic time constant T' = ¢/v by currents flowing into the ’grounded’ ring at r = ¢. As before
we can calculate the surface charge density and charge inside the radius r, which evaluate to

J(] J[),{?‘/C —j[;gt/T 20 ]_ it
E () =2Q) - e dut/T 117
CQ T2(jor) Quarlt) =2Q — JorJ1(Jo) a7)

I(t)/2Q/T)
2.00

100+

050

q(x,y.t)
020+

R Q/ 0.10}

I(t) 0.05}

a) = b) 0% 05 10 15 2077

Figure 13: a) A point charge placed in the center of a resistive layer that is grounded at r = ¢. b) Current flowing to

ground, where the straight line corresponds to the approximation from Eq. 119.

The current flowing into the ’grounded’ ring is then again

_ _thot _ 2rm @ > 1 —jort/T
[t)===4 =g Em=7 ;.Ilﬁjm)e

(118)

One can verify that the total amount of charge flowing to ground fom I(t)dt is again Q. The current can
be pictured to decay with an infinite number of time constants 7, = T/4qi, so for large times the longest

one i.e. T/jo; = 0.42T will dominate and the current decays as I(t). The current is plotted in Fig.

~ 2Q e~ Joit/T
I(t) ~ Th(n © t>T

13b.

(119)

A point charge Q is placed on a
resistive layer with surface
resistivity of R Ohms/square
that is grounded on a circle

What is the charge distribution
at time t>0 ?

Note that this is not governed
by any diffusion equation.

The solution is far from a
Gaussian.

The charge disappears
‘exponentially’ with a time
constant of T=c/v (c is the
radius of the ring)
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Resistive layer grounded on a rectangle

Next we assume a rectangular grounded boundar
() at position g,y at ¢ = 0 as indicated in Fig. 14¢

),
y=b =

Cl"ﬂ(t). (Xg: Ya)

1t
.L“ q(x.y.t)

= RO/
(0,0) x=a
[ -/Hy(l)
a) =

Figure 14: a) A point charge placed on a resistive layer tha
resistive layer that is grounded on at # = 0 and = a but in:

expression Eq. 42. Assuming the currents pointing to the outside of the boundary, the currents flowing

through the 4 boundaries are

1" B _1 " 9
Imf—ﬁ‘[o —ah:ndy IQm*ﬁfo ~or e=ady

1 g 1 [T 8¢y
Ily—*ﬁfo g lvmod® *’%—ﬁﬁ L

which evaluates to

Qv I =1 1 me . Tz . lmyn g
Li:(t) = —ZZ E—[l—(—l) ]smTOsmTOe Kim vt

L) = 22U %i(—nf [(=1)™ — 1]sin “’% sin ‘E"%e—kmvt

2
a =1 m=1 k"'m
4QU N = m 1 . drxg . lmyg
Lyt) =35> >, T km [1-(=1)] sin —, Sm— e Ko T
I=1 m=1

Ioy(t) = @z Z ?L(*l)m [(~1)" — 1] sin hr% sin hr%e_kimm

(120)

(121)

(122)

(123)

(124)

(125)

In case we want to know the total charge flowing through the grounded sides we have to integrate the

above expressions from ¢ = 0 to oc which results in the same expressions and just e #m®?

replaced by

1/(kymv). These measured currents can be used to find the position of the charge, a principle that is
applied in the MicroCat detector. As an example, Fig. 15 shows the correction map that has to be

applied in case one just uses linear interpolation of the measured charges.

A point charge Q is placed on a
resistive layer with surface
resistivity of R Ohms/square
that is grounded on 4 edges

What are the currents induced
on these grounded edges for
time t>0 ?

y/a
1.0

E 1 | 1 1
R

0.6+

04+

» for the case where the position of the charge is determined by linear |
boundaries of the geometry in Fig. 14a.
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Resistive layer grounded on two sides and i

y=b

X=a

020+
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100}
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| L i i
0 1 2 3 4 5

Figure 16: Currents for the geometry of Fig. 14b for zgp = a/4.

5.4. Resistive layer grounded of >a and insulated at £b.

In case the resistive layer is grounded at # = 0,z = a and insulated at y = 0,y = b, as shown in Fig.
14, the currents are only flowing into the grounded elements at = 0 and x = a. We use Eq. 43 and
with some effort the summation can be achieved and evaluates to

b : T
1 01 Q sin(m %)
Ii:(t) = —= ——|p—0dy = — — a 126
=) =—g fD bz =0 =~ 17 cosh( %) — cos(mZ2) (126)
b : T
1 01 Q sin(m%2)
(1) = = ———|p=ady = — —= 2 127
2(t) R /0 Oz | y 7T cosh(%) + cos(m ™) (127)
with 7' = 2e2oft — 2 For large times both expressions tend to
2 z
I, (t) = I, (t) =~ —g cos (ﬂ;ﬂ) e t/T (128)

Fig. 16 shows the two currents for a charge deposit at position zg = a/4 together with the asymptotic
expression from Eq. 128. The total charge that is flowing through the grounded ends is given by

a— Iy

q = Am I.(t)dt = Q

g = [C Lo (t)dt = Q2 (129)

so we learn that the charges are just shared in proportion to the distance from the grounded boundary,

equal to the resistive charge division.

Possibility of position measurement in RPC and Micromegas

Werner Riegler, CERN

A point charge Q is placed on
a resistive layer with surface
resistivity of R Ohms/square
that is grounded on 2 edges
and insulated on the other
two.

What are the currents induced
on these grounded edges for
time t>0 ?

The currents are monotonic.

Both of the currents approach
exponential shape with a time
constant T.

The measured total charges
satisfy the simple resistive

charge division formulas.
20



Uniform currents on resistive layers

© (@.b)

Uniform illumination of the resistive

layers results in ‘chargeup’ and related
potentials.

(ab) @ @b)

-——— - R ————

.(0,0) (a0) x -(0,0) (a0) X

Figure 25: A uniform current 'impressed’ on the resistive layer will result in a potential distribution that depends strongly
on the boundary conditions. The 4 geometries shown in this figure are discussed.

In this section we want to discuss the potentials that are created on thin resistive layers for uniform
charge deposition. In detectors like RPCs and Resistive Micromegas such resistive layers are used for
application of the high voltage and for spark protection. The resistivity must be chosen small enough to
ensure that potentials that are established on these layers due to charge-up are not influencing the applied
electric fields responsible for the proper detector operation. If such detectors are in an environment of
uniform particle irradiation the situation can be formulated by placing a uniform ‘externally impressed’
current per unit area ig [A/cm?] on the resistive layer. For illustration we use the example of a resistive
layer an absence of any grounded planes from Section First we want to investigate the geometry
shown in Fig. ) where the layer is grounded on a circle at r = ¢. The charge dg placed on an
infinitesimal area at position ry, ¢ after time ¢ is given by dg(t) = igrodrodgot, or in the Laplace domain
dq(s) = igrodrodgn/s®>. We therefore have to replace Q/s in Eq. by ¢(s), which results in

3.0 RT‘od?"odqf?o —k
——F—— €
s k+ 25qRs

E._g RT‘D d’-‘"gd(}')o kz

2 160
s k+ 2:0Rs (160)

filk,z,s) = falk,z,8) =

Since we want to know the steady situation for long times ie. for t =+ oo we f(k,z,t = o0) =
limg_,0 8f(k, 2z, s) and have

Rig'f‘g d’.l"gd{f)g ekz
k

_ Rig?‘gd?‘gd{f}g e k=

k) = falk ) = =20 = (161)
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Jo (Gour /)
r,z) = ¢3(r,—z) = 2¢*Ri 7970”'/3 162
u(r5) = oalr =) =2 i Y R (162

For z = 0 i.e. on the surface of the resistive layer, the expression can be summed and we have

¢1(r,z=0) = ¢a(r,z =0) = imo(c? —r?) (163)

This expression can also be derived in an elementary way: the total current on a disc of radius r i.e.
r?mig, is equal to the total radial current flowing at radius r i.e. 2r?rE /R. This defines the radial field
inside the layer to F, = Rigr/2. With the boundary condition ¢(c) fo r)dr = 0 we find back the
above expression. The maximum potential is therefore in the centre of the dlSC and is equal to
2 B
o(r=0) =2 Zf 0 - ;—WRIM ~ 0.08 Rl (164)
To find the potentials in the rectangular geometry of Fig. we again have fi, fo from Eq. [161]we just
have to replace rodrodgg by drgdyy and perform the integration foa dxg ﬁ:? dyy of Eq. , which results in

(—=1)™] sin(Irz/a) sin(mmy/b)

1 = [1-(-1
$1(z,y,2) = ¢a(z,y, —z) = abRig —422 (=10 - Brb/a + milalb efm?  (165)

The expression cannot be written in closed form but converges quickly, so numerical evaluation is straight
forward. The peak of the potential can be found by setting d¢;/dz = 0,d¢,/dy = 0 and is found at
r = a/2,y = b/2, which is also evident by the symmetry of the geometry. The maximum potentia
the resistive layer is then

_l)i—l—m

128 (
R 2p?
e ;;1 T 22— 13 2m—1) + a2(2m —

Omaz = ¢(a/2,b/2,2 =0) =
For a square geometry (b = a) the sum evaluates to & 0.59 so the peak voltage i
Omaz ~ 0.074Riga® = 0.074 RI;0;

We see that the value is only less than 10 % different from the peak voltage for the circular boundary in

Eq.

For uniform illumination of the geometry Fig. that is grounded at z = 0,a and insulated at y =0,b
we use expression Eq. and proceed as before and find

o R 1 .
61(a,2) = da(x,—2) = 2Riga? Y L= TV ZTL/D) e
=1

The potential is is independent of y and for z = 0 the sum can be written inclosed for

é1(z,z2=10) = —Rzg(az — 22 Pmar = %agRiD (169)

a) iu
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Infinitely extended resistive layer with parallel ground plane

Assuming an infinitely extended geometry, the time dependent charge density evaluates to ayb) y 7 [
WY / b
1 [ r gy b b 4
g(r.t) = % 5£ ffJu(ﬁE) exp {*n(l 76_25)?] ds  T= o= 2beg R (134)

It can be verified that Jrum 2rmg(r,t)dr = Q at any time. For long times i.e. large values of t/T" we can
approximate the exponent of the above expression by

k(1 —e-)E o 2t
k(l—e )T ~ -2k T (135) a)
and the integral evaluates to
_Q 1 —ghm Figure 18: a) An infinitely extended resistive layer in presenc
art) = bem 8¢/T © . s radglilus r= c.) Y Y 7
A point charge Q is placed on an infinitely
In analogy to the one dimensional transmission line, the discussed geometry is often assumed to be extended resistive layer with surface reSIStIVIty of
defined by the two dimensional diffusion equation R Ohms/square and a parallel ground plane at t=0.
b0, (Fa Fa) ,_ _=
at#h(axg+ayg) h=1/RC C=73 (137)

What is the charge distribution at time t>0 ?

where C' is the capacitance per unit area between the resistive layer and the grounded plate. The solution
of this equation for a point charge @ put at r = 0,¢ = 0 evaluates exactly to the above Gaussian expression
In Fig. 19 the charge distribution from Eq. 134 is compared to the above Gaussian as well as Eq. 113
for the geometry without a ground plane. Although the order of magnitude is similar, the solution of This process isin princi p|e NOT governed by the
the diffusion equation does not work very well. The reason for the discrepancy can be understood when diffusion equ ation
investigating how Eq. 135 is derived: the current j(z,y,t) flowing inside the resistive layer is related to '
the electric field F(z, y.t) in the resistive layer by 7 = E/R. The relation between the current and the
charge density g(z,y,t) is Vj = —8g/8t. With E = —V¢ we then get . o . . .

b0 1 (8% &% In practice is is governed by the diffusion equation

% _E(@J“@) (138) for long times.

If we set ¢ = C'¢ we have the diffusion equation Eq. 135. This relation between voltage and charge(Q =
CU) is however only a good approximation if the charge distribution does not have a significant gradient q(rt=T)/(Q/b2m)
over distances of the order of b. For small times when the charge distribution is very peaked around zero 0.6

this is certainly not a good approximation. It means that for long times when the distribution if very

broad when compared to the distance b the two solutions should approach each other. Indeed this can be sl : : —
seen if we calculate the current that is induced on the grounded plate, which we do next. The presence 85 Ch arg € d I St” b Utl on at t_T
of the charge on the resistive layer induces a charge on the grounded metal plane. If we assume that the
metal plane is segmented into strips, as shown in Fig. 20b, we can calculate the induced charge through
the electric field on the surface of the plane. Assuming a strip centred at x = z, with a width of w and
infinite extension in y direction, we find the induced charge to

r/b




Infinitely extended resistive layer with parallel ground plane

What are the charges induced
metallic readout electrodes by
this charge distribution?

z
Tptuw/2  poo O
Qinalt) =f f —E[]?]z:—bdydx (139) q(x,y,t) Y b
Tp—wf2 Joo Z
which evaluates to
_2Q [T ey sin(e ki k(12 b
Qinalt) = - /‘; ;Lob(ﬁ. ) ]bm(ﬁzbjexp{ k—r(l—e )T} dk (140)

The solution of the diffusion equation assumes the relation of a capacitor where the ground plate should
just carry the charge density —g(z,y, t), so the total charge on the strip is

Tp+wf2  poo 2 o 2Ep _
alt) = f Con fx ol )dzdy = < [erf(r‘” ,—;;;) —erf(r T;"Iﬂ (141)

Both expression are shown in Fig. 19b. Although there are significant differences at small times the
curves approach each other for longer times when the charge distribution becomes broad. Indeed, if take
Eq. 139 we see that for large values of £/T" only small values of x contribute to the integral, so if we
expand the exponent as

ice of a grounded layer. b) The same geometry grounded at a

ot I Qind()/Q
—k—k(l—e “)1—,@—25 T (142) 010+ ; . — ; — s
the integral evaluates precisely to expression Eq. 140. Gau sSsian a.p p roximation
0.08

broad. The solutions still do not represent a detector signal due to the unphysical assumption that the
charge is created 'out of nowhere’ at ¢ = 0. The correct signal on a strip due to a pair of charges +=@Q
moving in a detector will be discussed in Section

0.06 |

oal Exact solution

0.02

“"mn 2 4 6 8 10 12

T
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24



Charge spread in e.g. a Micromega with bulk or surface resistivity
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Figure 27: Weighting field for a geometry with a resistive layer having a bulk resistivity of p = 1/¢[(cm] (left) and a
geometry with a thin resistive layer of value R [(}/square] (right).
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Figure 28: Uniform charge movement from z = 0 to z = g, with e, = 1, wx = 4g,b = g,70 = 10T for a)z = D and b) = = 4g.
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Figure 29: Uniform charge movement from z = 0 to » = g, with &r = 1wz = dg,b= g,70 =T for a)z = 0 and b) x = 4g.
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Figure 30: Uniform charge movement from z = 0 to z = g, with er = 1,wz = 4g,b = g, 70 = 0.1T for a)z = 0 and b)
r=4g.

Charge spread in e.g. a Micromega

with bulk resistivity

0 = ED/O' = &pp.

T =g/v

————  Z€ro Resistivity

——===: INfinite Resistivity (insulator)

All signals are unipolar since the charge
that compensates Q sitting on the surface
is flowing from all the strips.
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Charge spread in e.g. a Micromega
with surface resistivity

Twigm Ty T/QT
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Figure 31: e, = 1, w, = 4g,b=g,To = 10T for » =0, =4g,2 = 8g
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Figure 33: e, = L,wy = 4g9,b=9,To =0.1T for 2 =0,z = 49,2 = 8¢
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Figure 34: g, = 1w, =4g,b = g,Ty = 0.01T for x = 0,z = 49,2 = 8g
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Figure 35: g, = 1,w, =4g9,b=g,Ty = 0.001T for x =0,z = dg, 2 =8g




Summary

Fields and signals for detectors with a multilayer geometry and
containing weakly conducting materials can be calculated with the
presented formalism.

Charge spread, the path of currents, charge-up, signals, crosstalk
can be studied in detalil.

The examples can also be used a accurate benchmarks for
simulation programs that calculate these geometries numerically.
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