Upgrade of SRS Electronics for PRad GEMs readout

Kondo Gnanvo

University of Virginia, Charlottesville, VA

On behalf of the PRad Collaboration

Outline

- ✓ The PRad Experiment
- ✓ SRS Readout for PRad GEM trackers
- ✓ SRS Firmware Upgrade
- ✓ Integration to JLab DAQ system (CODA)

The Proton Charge Radius Puzzle

Methods for measuring proton charge radius

• Electron-proton elastic scattering to determine electric form factor (Nuclear Physics)

$$\sqrt{\langle r^2 \rangle} = \sqrt{-6 \frac{dF(\vec{q})}{dq^2}} |_{q^2=0}$$

- Spectroscopy (Atomic physics)
 - Hydrogen Lamb shift
 - Muonic Hydrogen Lamb shift

- 7σ discrepancy between the atomic hydrogen Lamb shift and muonic hydrogen Lamb shift
- New Experiments:
 - Atomic spectroscopy
 - Muon spectroscopy (PSI)
 - Muon proton scattering (MUSE, PSI)
 - Electron Proton scattering with different schematics (JLab, Mainz)

The PRad Experiment @ JLab: $ep \rightarrow ep$ Scattering

The Proton Charge Radius from $ep \rightarrow ep$ Scattering Experiments

 In the limit of first Born approximation the elastic *ep* scattering (one photon exchange):

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\,2}(Q^2) + \frac{\tau}{\varepsilon} G_M^{p\,2}(Q^2)\right)$$

$$Q^2 = 4EE'\sin^2\frac{\theta}{2}$$
 $\tau = \frac{Q^2}{4M_p^2}$ $\varepsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta}{2}\right]^{-1}$

Structure less proton:

$$\boxed{\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} = \frac{\alpha^2 \left[1 - \beta^2 \sin^2 \frac{\theta}{2}\right]}{4k^2 \sin^4 \frac{\theta}{2}}}$$

- G_E and G_M were extracted using Rosenbluth separation (or at extremely low Q² the G_M can be ignored, like in the PRad experiment)
- The Taylor expansion at low Q²:

$$\label{eq:GE} \boxed{G_E^p(Q^2) = 1 - \frac{Q^2}{6} \langle r^2 \rangle + \frac{Q^4}{120} \langle r^4 \rangle + \dots}$$

A. Gasparian

CLAS col. meeting, 2015

Specifications for PRad Experiment

- Non Magnetic spectrometer
- High resolution and high acceptance calorimeter ⇒ low scattering angle [0.7° 3.8°]
- Simultaneous detection of ee \rightarrow ee (Moller Scattering) \Rightarrow minimize systematics
- High density windowless H₂ gas target
 ⇒ minimze background

 Definition of the Proton Radius: (r.m.s. charge radius given by the slope)

$$\left\langle r^2 \right\rangle = - \left. 6 \left. \frac{dG_E^p(Q^2)}{dQ^2} \right|_{Q^2 = 0} \right|_{Q^2 = 0}$$

PRad Experiment (E12-11-106):

- High "A" rating (JLab PAC 39, June 2011)
- Experimental goals:
 - Very low Q² (2×10⁻⁴ to 4×10⁻²)
 - 10 times lower than current data @ Mainz
 - Sub-percent precision in <r_p²> extraction

Mainz low Q² data set

The PRad Experimental Setup in Hall B

RD51 coll. Meeting - WG5 @ CERN, 09/03/2016

PRad GEMs

- Two large GEM chambers right in front of HyCal covering an area of ~ 120 cm x 110cm.
- Each chamber is a COMPASS triple-GEM (120 cm x 54 cm) wit 2D strips readout.
- SRS Readout Electronics:
 - 36 APV cards per Chamber
 - 4608 Readout Channels per Chamber

UNIVERSITY VIRGINIA

RD51 coll. Meeting - WG5 @ CERN, 09/03/2016

SRS readout for PRad GEMs

Need for PRad GEM chambers ⇒ (9216 e- channels)

- Experiment trigger peak rate at 5 kHz
- Each GEM chamber:
 - 3 (4) ADC/FECs (firmware upgrade) with 12 (9) APVs cards each with 3 time samples
 - 1 SRU collected the data to the DAQ PC through 10 Gb link
 - (firmware upgrade)
- Integration of the SRS electronics into JLab DAQ (CODA software)

SRS readout: Challenges @ 5kHz trigger rate

- Data from APV25 data to FEC cards:
 - 3 time samples: readout mode is about 100 kHz (10 μs), no problem for PRad GEMs readout
- Data from FEC to SRU: 1Gb Ethernet cable (125 MB/s), data transfered through UDP
 - Rate capability limited 640 Mbps: 800 Mbps line speed (Why I don't know?) × 80% (for 8b10b line encoding overhead).
 - 3 time samples mode: the APV25 data size per event is ~ 1 kB ⇒ transfer rate @ 5 kHz = 5 MB/s
 - Fixed trigger rate: 12 APV25 per FEC/ADC, the data transfer is 60 MB/s and with 9 APV25 ⇒ 45 MB/s (safe mode)
 - Random trigger rate: situation is worse ⇒ Need firmware upgrade: Implementation of trigger buffering
- Data from SRU DAQ PC: from 1 Gb to 10 Gb optical fiber
 - Default SRU implementation: 1 G Ethernet cable (125 MB/s), data transfered through UDP
 - First bottleneck to address: SRU data from 36 APV25
 ⇒ minimal transfer rate @ 5 kHz = 180 MB/s
 - Firmware upgrade: Implementation of 10 Gb optical link to the DAQ PC
- Data from DAQ PC to the disk: Writing APV25 data (no zero suppression) into disk @ 5kHz is a challenge (~ 360 MB/s)
 - Need online zero suppression at the event building level on the DAQ PC
 - Event size to be reduced by more than a factor 100
 - Pedestal data and zero suppression algorithm is under development

Upgrade of SRU Firmware: Implementation of 10 Gb Optical link (B. Moffit, JLab DAQ group - B. Raydo, JLab Fast Electronics Group)

Existing SRU firmware from RD51 CERN

- Standard SRU firmware developped for the APV25 electronics with 1 Gb Ethernet link
- 10 Gb firmware was developped and tested in 2012 but was not compatible with standard SRU firmware

Upgrade of APV25-compatible 10 Gb SRU firmware (JLab DAQ)

Merging the two firmware

Test Setup

- 36 APVs, 3 Time sample, 3 FECs (Event size 38.5 kB)
- APV25 calibration pulse with internal trigger
- We tested the rate with standard 1(Gb) and upgraded (10 Gb) APV25-SRU firmware
- 1 Gb link (SRU): Saturation observed beyond ~3.2 kHz
 (Max. expected rate before saturation ~ 3.3 kHz)
- 10 Gb link (SRU): linear data transfet speed up to 5.5 kHz
 ⇒ saturation expected beyond 6 kHz (FEC data to SRU @ 80 MB/s)

250 limitation 1 Gb FEC to SRU 200 150 **SRU 1Gb: limitation** 1 Gb link to DAQ PC 1GbE SRU 10GbE SRU 100 50 Λ 2 0 1 3 Δ 5 Trigger Rate (kHz)

RD51 coll. Meeting - WG5 @ CERN, 09/03/2016

1/10GbE SRU Data Rate vs Trigger Rate (3 FEC, 12 APV per FEC, 3 TS)

Upgrade of FEC Firmware: Principle of Trigger Buffering

(B. Moffit, JLab DAQ group - B. Raydo, JLab Fast Electronics Group)

Non-buffered trigger FEC firmware (original): Live Dead APV UPD Frame VPD Frame VPD Frame VPD Frame VPD Frame

- Dead/busy while APV sends triggered data and dead/busy while UPD packets are sent
- For fixed trigger rate, the dead time is basically determined by the UDP data processing (~200 μs)
- For random trigger: the mechanism is inefficient

⇒ no use of live time with low trigger burst but high trigger burst mean data loss because of dead time

Live Dead APV APV APV APV APV APV UPD Frame UPD Frame ~10us ~200us

Buffered trigger FEC firmware (new):

- Dead/busy while APV sends triggered data, no longer dead/busy while UPD packets are sent
- UDP processing of APV data is "de-correlated" from APV sending data
- When buffers in FPGA (holding captured APV for UDP processing) become full, then the FEC create necessary dead/busy time.
- For random trigger, @ high trigger burst, APV data are stocked in buffer and UDP packet is formed during the low trigger burst
- Dead/busy time while APV sends data can be eliminated to improve live time, but requires significant changes to FEC firmware.

Upgrade of FEC Firmware: Source codes changes (B. Moffit, JLab DAQ group - B. Raydo, JLab Fast Electronics Group)

Old firmware (standard)

- APV chip has a 4096 deep sample buffer. When capturing a few samples (e.g. 3), only a fraction of this buffer is used.
- The firmware performs the following steps sequentially:
 - 1. receive a trigger
 - 2. capture APV data
 - 3. wait for the data to be fully processed by the UDP processor
 - 4. Ready to accept another trigger.

New firmware

- writes multiple events in the existing buffer circularly. A new FIFO was added that gives a pointer into this buffer (along with other trigger header information) to the UPD packet processor.
- The new firmware performs the following steps in parallel:
 - 1. Receive a trigger, capture APV data, ready to accept another trigger
 - 2. Check trigger FIFO, build UPD packets
 - 3. Check circular buffer and assert BUSY if no more events can be accepted.
- Trigger processing dead time ~25 microseconds with up to 10 triggers can be buffered
- BUSY output (NIM Out): Busy Feedback to Trigger Supervisor to allows for more efficient acceptance of triggers without assumptions of FEC processing dead time.
- Without buffering, as a test example, we needed up to 70kHz input rate to readout near 5kHz
 → dead-time close to 100%. With
 buffering enabled the input rate could be slightly over 5kHz to readout near 5kHz
 → dead-time just a few percent.

Upgrade of FEC Firmware: Preliminary Tests (B. Moffit, JLab DAQ group - B. Raydo, JLab Fast Electronics Group)

Tests

- 9 / 12 APV25 (ADC channels), on 1 FEC with 3 time samples to the SRU (Expected configuration for PRad)
- Random pulse generator board with both buffered and un-buffered Trigger tested simultaneously
- Ongoing tests with 4 FECs and 36 APVs

@ 5 kHz random trigger rate

- Un-buffered triggers firmware: readout rate of ~2.8 kHz (9 APVs on FEC) => 44% dead time
- Buffered trigger firmware: readout rate of ~4.25 kHz (9 APVs on FEC) => 15% dead time, OK for PRad

RD51 coll. Meeting - WG5 @ CERN, 09/03/2016

Integration of SRS into JLab DAQ: PRad DAQ Overview

Integration of SRS into JLab DAQ: Hardware (B. Moffit, JLab DAQ group - B. Raydo, JLab Fast Electronics Group)

- PClexpress Trigger Interface (Tlpcie)
 - PC / Server Integration into JLab Pipeline DAQ
 - Allows for using multiple cores/threads for data processing / data reduction
 - Standard PC Hardware allows for multiple network cards (1G, 10G, Infiniband)
 - Fiber Connection (Clock, Trigger, Sync) to Trigger Supervisor
 - Runs in Standalone (Master) or Larger-Scale DAQ (Slave).
 - Kernel and userspace driver compatible with EL5, EL6 (i386, x86_64)
- Interface to the SRS
 - SRU receive the trigger from the TIpcie
 - FECs send BUSY signal to Trigger Supervisor either directly or via the TIpcie

Integration of SRS into JLab DAQ: Software development

(B. Moffit, JLab DAQ group - B. Raydo, JLab Fast Electronics Group)

Software librairies for the slow control

- C Library written to be used with CODA, but also works standalone
- Compatibility: REDHAT EL5, EL6 (i386, x86_64)
- Uses calls to routines for the configuration and readout
 - instead of using system calls to external programs/scripts
 - Still has the capability of reading in the original configuration text files.
 - More 'human' readable, Parameters can be input in any base (hexadecimal, decimal)
- Allows for iterating over several FEC with similar configuration

Online monitoring

- Before zero suppression (not implemented at the firmware level)
 - Raw APV data frames are available for online monitoring during the life time of PRad run
 - Monitoring of the all APV25 FE proper initalisation after DAQ reboot
- Zero suppression at software level during Event Building stage in the DAQ PC
 - Online monitoring of hits in the chamber and hits information
 - Clusterization algorithm for real time characterisation of the GEM chambers
 - 2D hit map, Gain uniformity, ADC distribution etc ...
 - Hits and cluster informations passed to the event data file to be written into disk

PRad Collaboration Institutional List

Currently 16 collaborating universities and institutions

- Jefferson Laboratory
- NC A&T State University
- Duke University
- Idaho State University
- Mississippi State University
- Norfolk State University
- University of Virginia
- Argonne National Laboratory
- University of North Carolina at Wilmington
- University of Kentucky
- Hampton University
- College of William & Mary
- Tsinghua University, China
- Old Dominion University
- ITEP, Moscow, Russia
- Budker Institute of Nuclear Physics , Novosibirsk, Russia

Summary

- APV25-based SRS is the readout electronics for the Prad GEMs
 - Readout System is based on the standard SRS with the ADC/FEC/SRU board
 - 9216 electronic channels to be read out at 5 khz peak rate
- Firmware upgrade to allow high rate capability
 - SRU firmware: implementation of 10 Gb optical link for the data transfer from the SRU to the DAQ PC
 - FEC firmware: Implementation of the buffering trigger ⇒ allow 5 kHz trigger rate with limited dead time
- Integration of the SRS into JLab DAQ system
 - JLab custom board TIpcie for the trigger interface between SRS and Prad DAQ system
 - Development of the Tlpcie libraries and slow control routines
 - Development of the online monitoring software
- Successfull preliminary tests of the new development
 - Test of the buffering trigger shows live time improvement from 56% to 85% at 5kHz trigger rate
 - Integration into JLab DAQ and interface with the TIpcie also successfulli tested
 - Data decoder software also have been tested and online software zero suppression is under development

Back Up

RD51 coll. Meeting - WG5 @ CERN, 09/03/2016

Online Monitoring for PRad GEM & Electronics

