THGEM gain calculation using Garfield: The solution for discrepancies to the experimental data

<u>C.D.R. Azevedo</u>¹, P.M.M. Correia¹ and J.F.C.A. Veloso¹

¹ I3N - Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal

- Garfield was known to fail on THGEM gain calculations
 - Sometimes 2 order of magnitude for high gains
 - Untrusted works when gain was required
 - Users have tested different FEM software (ansys, elmer, etc..) trying to find a solution
 - Problem still unsolved.

The tip:

- Ozkan paper:
 - 2010 JINST 5 P05002

The tip:

• Ozkan paper:

Conditions:

- Software: Gmsh+Elmer + Garfield
 - Changed elmer script from garfield examples*
 - THGEM
 - t=0.4mm
 - p=0.5mm
 - d=0.3mm
 - r=0.1mm
 - gas->EnablePenningTransfer(0.18, 0.);

* http://garfieldpp.web.cern.ch/garfieldpp/examples/elmer/

The tip:

- Ozkan paper:
 - 2010 JINST 5 P05002

Conditions:

- Software: Ansys + Garfield
 - THWELL
 - t=0.4mm
 - P=1.0mm
 - d=0.5mm
 - r=0.1mm
 - Ne/5%CH₄
 - Penning fraction = 0.4;

Why not such difference in GEM?

Conclusions and Future Work

- Preliminary results:
 - THGEM problem with garfield seams solved.
 - Need more statistics
 - Other micropatterned structures: RPWELL, etc...
 - Already testes → Problems in the electrical properties of Semitron
 - Possibility to use garfield to extract penning factors from experimental results for unconventional mixtures