

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Modelling of Energy Transfer Drops in Ne-CO₂ mixtures

Özkan ŞAHİN¹, Tadeusz KOWALSKI² and Rob VEENHOF^{1,3}

¹Uludağ University, Physics Department, Bursa – TURKEY

²Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow – POLAND

> ³RD51 Collaboration, CERN, Geneva – SWITZERLAND

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

RECEIVED: June 19, 2015 REVISED: October 1, 2015 ACCEPTED: December 8, 2015 POBLISHED: January 7, 2016

CO₂ percentage

Pure Ne			
7)	10%	14)	74%
6)	7%	13)	60%
5)	5%	12)	50%
4)	4%	11)	40%
3)	2%	10)	30%
2)	1%	9)	20%
1)	0.6%	8)	15%

Pure CO₂

Systematic gas gain measurements and Penning energy transfer rates in Ne-CO₂ mixtures

Ö. Şahin,^{a,1} T.Z. Kowalski^b and R. Veenhof^{a,c}

- ^aDepartment of Physics, Uludağ University, 16059 Bursa, Turkey
- ^b Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
- ^c RD51 collaboration, CERN, Genève, Switzerland

E-mail: osahin@uludag.edu.tr

ABSTRACT: In Ne-CO₂ mixtures, excitation energy of Ne atom can be used to ionize CO₂ molecule by the mechanisms called Penning transfers. In the present work, we have measured the gas gain systematically in various Ne-CO₂ mixtures (Ne + 0.6-60 % CO₂) at 0.4, 0.8, 1.2, 1.8 atm. The experimental data have been fitted to investigate the Penning energy transfer rates and the secondary processes playing a role in avalanche formations.

doi:10.1088/1748-0221/11/01/P01003

Ne – CO₂ gas gain calculations

Penning correction
♦ Ne* + CO₂ → Ne + CO₂⁺ + e⁻
♦ All of the excited Ne atoms can ionise CO₂

$$\alpha_{Penning} = \alpha \frac{\sum v_i^{\text{ion}} + \sum r_i v_i^{\text{exc}}}{\sum v_i^{\text{ion}}}$$

Photon feedback $G' = G/(1-\beta G)$

Production frequencies of the ionisations and excitations with Magboltz 10.10

Dashed lines: without corrections (Penning, feedback),

- * Thin lines: with Penning, without feedback corrections,
- * Thick lines: final fits with Penning and feedback corrections.

Gain ratio: measured vs calculated without Penning

- ★ Decrease for 30% and upper CO₂ fractions
- $Approaches unity in pure CO_2$
- ✤ No gain data yet in pure Ar

RD51 Collaboration Meeting, 8-11 March 2016, CERN

 \clubsuit Ratio increases from pure neon to 1% CO₂ and becomes smaller at high CO₂ fractions

***** So, almost the same trend for the ratio as seen in Ar – CO₂ mixtures !

 \bullet Better agreement in pure CO₂

Penning rates derived from the gain fits

✤ Bigger rates at higher CO₂ concentrations and mixture pressures

- shorter collision time of excited Ar atoms
- * Ar 2p and higher levels are included

Plot: Ö. Şahin, T.Z. Kowalski and R. Veenhof, *High-precision gas gain and energy transfer measurements in Ar-CO*₂ *mixtures, Nucl. Instrum. Meth.* **A 768** (2014) 104.

RD51 Collaboration Meeting, 8-11 March 2016, CERN

The transfer rate increases with pressure
shorter collision time

***** BUT, drops at high CO₂ fractions !!!

Although the gain ratio descends with CO_2 , the rate is expected to be high since excited Ne atoms will find more CO_2 molecules to transfer

Plot: Ö. Şahin, T.Z. Kowalski and R. Veenhof, Systematic gas gain measurements and Penning energy transfer rates in $Ne - CO_2$ mixtures, 2016 JINST 11 P01003.

Production ratios of the direct ionisations

Direct ionisation of neon is dominant in the mixtures filled with higher than 90 % Ne,
particularly at high electric fields (ionisation potentials: CO₂⁺ 13.78 eV, Ne⁺ 21.56 eV)
Beyond 10% CO₂, the largest part of the gain comes from CO₂ ionisations,
In 50% and 74% CO₂ mixtures the contribution of Ne⁺ downs much lower than10 %

Are CO₂ ionisation cross sections wrong in Magboltz ???

* Magboltz calculates the measured gain in pure CO_2 accurately without using any correction factor; direct ionisation cross sections of CO_2 in Magboltz are correct.

* There should really be other physical processes leading the transfer rate drops

Separate fits for the pressures

★ Hornbeck-Molnar ionisation is assumed to be dominant process (Ne* +Ne → Ne₂⁺ + e⁻)
★ Collisional ionisation of CO₂ takes 0 value
★ Ne* + CO₂ → Ne + CO₂⁺ + e⁻

* Collisional losses of Ne^{*} to Ne or CO_2 are included

Decay is not considered

RD51 Collaboration Meeting, 8–11 March 2016, CERN

- Collisional ionisation of CO2 is not included
- Collisional losses of Ne* are not included
- For the loss only decay is included

So, Hornbeck-Molnar ionisation (included) is one of the process that can lead to decrease of the transfer rate with increasing CO_2 fraction

Combined fits for the pressures

Separate fits do not allow to distinguish between Hornbeck-Molnar and decay processes

♦ Combined fit over the 4 pressures is needed:

no visible collisional transfer to CO₂
there are losses due to Ne and CO₂
Hornberck-Molnar is dominant mechanism

 \clubsuit a decay term is necessary to fit the rates

Physically meaningful fit parameters

There are some articles in literature that supports to above fitting results:
Hornbeck-Molnar process could be responsible for the high gain in Ne
Experimental data: excited (metastable) neon efficiently is quenched by CO₂

Continue to search mechanisms that can be important to explain collisional loss reactions for excited Ne; e.g. ion clustering may lead to drop of the transfer rates
RD51 Collaboration Meeting, 8–11 March 2016, CERN
9/12

Gain calculations in pure Ne

* Considering the neon excitation levels above 20 eV fits the experimental data with the transfer rates varying between $r_p = 40 - 65 \%$

- ✤ Hornbeck-Molnar ionisation threshold is 20.9 ± 0.2 eV
 - \clubsuit If the levels above this threshold are used then we get unphysical large values, r_p

***** Contamination of other gases (like O₂, N₂ etc.) even in purified neon can play an important role and may lead to Penning ionisations

RD51 Collaboration Meeting, 8–11 March 2016, CERN

Summary

* Increase of the rates below 3% CO_2 indicates the typical Penning transfer to CO_2 molecules (excited neon will find more CO_2 to ionise)

♦ Hornbeck-Molnar ionisation seem to be dominant mechanism that explains the transfer drops at high CO₂ fractions (Ne^{*} +Ne \rightarrow Ne₂⁺ + e⁻)

♦ But why excited neon does not prefer to collisional ionisations at large CO_2 fractions (Ne^{*} + CO₂ → Ne + CO₂⁺ + e⁻)

Losses of the excited metastable neon atoms (quenched by CO2) may have an effect

Many-body losses to CO₂ can also be responsible for the drops
 Clustering ions should be worked

RD51 Collaboration Meeting, 8–11 March 2016, CERN