

Formation and propagation of streamers in gas

Filippo Resnati

RD51 Collaboration Meeting - 11/03/2016 - CERN

Notice

http://e-collection.library.ethz.ch/view/eth:6303

This work was (more than) inspired by a simulation of Paulo Fonte of streamers

With one fundamental difference: formation and propagation of streamers rely on electron diffusion only

P. Fonte computed the diffusion assisted streamer too (and before)

https://indico.cern.ch/event/89325/session/0/contribution/16/attachments/ 1089488/1554083/Calculation_of_streamer_development.pdf Nice talks and references

Introduction

Discharge is a generic term associated to a specific class of problems in gaseous detectors

Several kind of discharges: Corona, Glow, Paschen, Arc, Streamer, ...

Each manifesting in *specific* situations and having distinct characteristics

À la Paschen

Photon feedback: lon feedback: Exposed electrodes Low pressure quenched gas in pure argon 0.25 140 amplitude (ADC cnts) 0.2 120 100 0.15 80 e- drift time over 10cm at low field ion drift time over 4mm at high field amplitude (V) 0.1 60 40 0.05 20 0 0 -20 -0.05 -40 50 100 150 200 250 drift time (µs) -0.1 100 -50 0 50 150 200

Current diverges if next peak larger than the previous Typically: event induced, increase of currents, **slow**

time (µs)

Streamer

Most relevant discharge (or discharge ignition) type for gaseous detectors in normal operation (personal opinion)

Sudden and fast (ns) evolution

Propagation also towards the cathode

Possibly with a precursor

Streamer

Driven by electric field distortions due to large charge densities (Raether)

Rely on gas photo-ionisation and electron drift and diffusion

Hereafter photo-ionisation is neglected: computation developed for pure argon, where scintillation photons are not able to ionise argon atoms

http://e-collection.library.ethz.ch/view/eth:6303

8

The model

$$\vec{\nabla} \cdot \vec{\epsilon} \vec{\nabla} V = -q_e (\rho_i - \rho_n - \rho_e)$$
$$\frac{\partial \rho_e}{\partial t} = \alpha |\vec{W}_e|\rho_e - \eta |\vec{W}_e|\rho_e - K\rho_i\rho_e - \vec{\nabla} \cdot (\vec{W}_e\rho_e - D_e\vec{\nabla}\rho_e)$$
$$\frac{\partial \rho_i}{\partial t} = \alpha |\vec{W}_e|\rho_e - K\rho_i\rho_e - \vec{\nabla} \cdot (\vec{W}_i\rho_i - D_i\vec{\nabla}\rho_i)$$
$$\frac{\partial \rho_n}{\partial t} = \eta |\vec{W}_e|\rho_e - \vec{\nabla} \cdot (\vec{W}_n\rho_n - D_n\vec{\nabla}\rho_n)$$

Unknowns: V, ρ_e, ρ_i, and ρ_n Input (field dependent): α, η, Κ, D_x, W_x It can be made more complete and complex, but

The model

$$\vec{\nabla} \cdot \vec{\epsilon} \vec{\nabla} V = -q_e (\rho_i - \rho_n - \rho_e)$$
$$\frac{\partial \rho_e}{\partial t} = \alpha |\vec{W}_e|\rho_e - \eta |\vec{W}_e|\rho_e - K\rho_i \rho_e - \vec{\nabla} \cdot (\vec{W}_e \rho_e - D_e \vec{\nabla} \rho_e)$$
$$\frac{\partial \rho_i}{\partial t} = \alpha |\vec{W}_e|\rho_e - K\rho_i \rho_e - \vec{\nabla} \cdot (\vec{W}_i \rho_i - D_i \vec{\nabla} \rho_i)$$
$$\frac{\partial \rho_n}{\partial t} = \eta |\vec{W}_e|\rho_e - \vec{\nabla} \cdot (\vec{W}_n \rho_n - D_n \vec{\nabla} \rho_n)$$

Unknowns: V, ρ_e , and ρ_i

COMSOL

Finite Element Analysis software able to find an approximate solution for a coupled system of PDEs on an (almost) arbitrary (3D, 2D, and 1D) mesh

Approximations

Absence of gas photo-ionisation

Atoms are ionised only once

No impurities/contaminants

Potentials at the electrodes are constant

Approximations

Single hole in axial symmetric geometry Dynamic equilibrium of the charging up Electric field smooth enough Perfect hole with no defects No stochastic process: *average* streamer

Amplification and saturation

Triple GEM data

Saturation: deviation from the exponential Saturation involves the full energy peak first Prelude of a discharge Each avalanche quenches its growth Resolution *improves*: large avalanches cannot grow, small avalanches can still grow

Amplification and saturation

Simulation of a single avalanche in a GEM

Ions moving towards the entrance of the hole reduce the amplification field affecting the multiplication of the forthcoming electrons

Within the same computation framework, the saturation is *qualitatively* reproduced

Absolute gain mismatch is related to e- diffusion in several holes, not included in the computation

There is a maximum achievable gain in simulation too...

Observations

LEM geometry in pure argon

n_e^0	$E_0 \; (kV/cm)$	n_{ion}
10	23.8	1.67×10^{7}
100	22.5	1.68×10^7
1000	21.1	1.71×10^7

Discharge occurrence

The spark limit is well defined by the total ion/electron pairs (per hole) produced in agreement with the Raether limit (gas and geometry dependent)

Observations

LEM geometry in pure argon

Low gain region: amplification region

High gain region:
streamer region

Gain in the amplification region limited by discharge in the streamer region

rim (μ m)	$E_0 \; (\rm kV/cm)$	E_{max} (kV/cm)	G
30	22.2	73.9	$1.86 imes 10^{5}$
50	22.9	69.3	$3.13 imes 10^5$
70	23.4	67.0	$4.20 imes 10^5$

Increasing the rim: decrease of the maximum field

LEM geometry in pure argon

Low gain region: amplification region High gain region:

streamer region

Gain in the amplification region limited by discharge in the streamer region

dielectric (mm)	$E_0 \; (\rm kV/cm)$	G
1.0	22.9	$3.13 imes 10^5$
0.8	25.3	$1.20 imes 10^5$
0.6	29.3	$3.86 imes10^4$

Decreasing the thickness: worsening the field uniformity

Observations

LEM geometry in pure argon

Gain in the amplification region limited by discharge in the streamer region

P (atm)	$E_0 \; (\rm kV/cm)$	G
0.8	19.8	$3.88 imes10^5$
1.0	22.9	$3.13 imes10^5$
2.0	35.7	$7.20 imes 10^4$
3.0	46.9	$3.10 imes10^4$

Increasing the pressure: increase of $\frac{G_{hi}}{G_{lo}} = \frac{e^{J_{hi}\alpha_{hi}}}{e^{\int_{lo}\alpha_{lo}}} \simeq e^{A\rho(x_{hi}e^{-B\rho/E_{hi}}-x_{lo}e^{(-B\rho/E_{lo})})}$

Summary

Computation of streamer in gas

Diffusion assisted streamers: no need of gas photo-ionisation

Qualitative data comparison possible, i.e. density decrease maximum gain, ...

GEM saturation simulated within the same framework