Discharge Studies in Floating Strip Micromegas Detectors

Jona Bortfeldt

CERN

Studies done while at Ludwig-Maximilians-Universität Munich

RD51 Collaboration Meeting March 2016 March 11th 2016

Motivation: Floating Strip Micromegas R&D

High Energy Physics

- muon tracking $\mathcal{O}\left(100\mu\mathrm{m}
 ight)$
- high-rate background $\mathcal{O}\left(20\,\mathrm{kHz/cm^2}\right)$
- large-area detectors $\mathcal{O}\left(\mathrm{m}^2
 ight)$

Medical Physics

- ion tracking $\mathcal{O}\left(100\,\mathrm{MeV}
 ight)$
- particle rate $\mathcal{O}(\mathrm{MHz})$
- ion transmission imaging

Detector Physics

- discharge formation & propagation
- discharge limits & rates in various gas mixtures \rightarrow identify (light?) gas mixtures with high gain at low discharge probability
 - \rightarrow understand why they behave in this way

\rightarrow discharge tolerant floating strip Micromegas for high rate applications

Motivation: Floating Strip Micromegas R&D

High Energy Physics

- muon tracking $\mathcal{O}\left(100\mu\mathrm{m}
 ight)$
- high-rate background $\mathcal{O}\left(20\,\mathrm{kHz/cm^2}
 ight)$
- large-area detectors $\mathcal{O}\left(\mathrm{m}^2
 ight)$

Medical Physics

- ion tracking $\mathcal{O}\left(100\,\mathrm{MeV}
 ight)$
- particle rate $\mathcal{O}(\mathrm{MHz})$
- ion transmission imaging

Detector Physics

- discharge formation & propagation
- discharge limits & rates in various gas mixtures \rightarrow identify (light?) gas mixtures with high gain at low discharge probability
 - ightarrow understand why they behave in this way

\rightarrow discharge tolerant floating strip Micromegas for high rate applications

Floating Strip Micromegas

challenge: discharges

- charge density $\geq 2 \times 10^6 \text{ e}/0.01 \text{ mm}^2$ (Raether limit)
- conductive channel
 - \rightarrow potentials equalize
- non-destructive, but dead time
 - \rightarrow efficiency drop

Floating Strip Micromegas

challenge: discharges

- charge density $\geq 2 \times 10^6 \text{ e}/0.01 \text{ mm}^2$ (Raether limit)
- conductive channel
 → potentials equalize
- non-destructive, but dead time
 - \rightarrow efficiency drop

idea: minimize the affected region

- "floating" copper strips:
 - strip can "float" in a discharge
 - individually connected to HV via $\frac{22M\Omega}{}$
 - capacitively coupled to readout electronics via pF HV capacitor
 - only two or three strips need to be recharged

 \rightarrow dedicated measurements & detailed simulation

voltage [V] floating strip MM 600 550 standard Micromegas 500 450E 400E 350E 300 -10 10 20 30 40 50 60 70 80 time [ms]

Discharge Study with Floating Strip Micromegas

- alpha source
 - \rightarrow induces discharges
- voltage drop on one to three strips
 - \rightarrow recharge current
- global high voltage drop \rightarrow affects all strips
- voltage signal on seven neighboring strips
 - \rightarrow discharge topology

Optimization of the Floating Strip Principle

- standard Micromegas (approximative): 100 kΩ 300 V drop, dead time ~80 ms
- intermediate: $1 M\Omega$ 20 V drop, dead time $\sim 10 \, \text{ms}$
- floating strip: $22 M\Omega$ $0.5 V drop \rightarrow negligible$

measured average voltage pulse

Detailed Investigation of the Global Voltage Drop

measured voltage drop of common HV potential

 \rightarrow discrete structure

 \rightarrow probably corresponds to discharge on one, two or three strips.

How can we show this?

 \rightarrow investigate discharge topology

Discharge Topology - Expected Amplitude Correlation

amplitude strip 3

- measure voltage signal on neighboring strips
- two reasons for signals on strips:
 - discharge onto strip
 - capacitive coupling from neighboring strips

Discharge Topology - One Strip

amplitude strip 3

- consider the involved capacitances e.g. between neighboring strips, coupling capacitors, cable capacitance ...
- simulate discharges (blue switch)

Discharge Topology - One Strip

Discharge Topology - Three Strips

Discharge Topology - Two Strips

three processes:

- 1 discharge on two strips
- 2 discharge on two strips, after discharge has ceased, charge leaks onto a neighboring strip
- 3 discharge one one strip, after discharge has ceased, second discharge on the second strip

Optimum Configuration: Global Voltage Drop

- good agreement between simulation and measurement
- only two free parameters
 - response time of HV supply: 500 ms
 - voltage difference between strips at which leakage stops: 220 V
- peaks correspond indeed to discharge of one, two or three strip

Summary

floating strip principle works

- discharges: negligible effect on common high-voltage
- discharges are localized
- no damage/aging due to discharges

 \rightarrow ideal device to measure discharge rates with different gases at amplification fields suitable for MIP detection

measurements

- muon tracking in high-rate background (Bortfeldt, The Floating Strip Micromegas Detector, Springer 2015)
- tracking of high-energy pions
- tracking of ions at highest rates
- ion radiography (Bortfeldt et al., Low-Material-Budget FSM for Ion Transmission Radiography, VCI 2016)

detector	beam	gas Ar:CO ₂ [vol. %]	E_{amp} [kV/cm]	Pp
6.4×6.4 cm ² floating strip	5.5 MeV alphas	93:7	37	10^{-1}
$9 \times 10 \text{ cm}^2 \text{ standard}$	120 GeV pions	85:15	41	10-5
48 \times 50 cm ² floating strip	120 GeV pions	93:7	38	10-4
$6.4 \times 6.4 \text{ cm}^2$ floating strip	cosmic muons + 20 MeV protons	93:7	36	3×10^{-7}
$6.4 \times 6.4 \text{ cm}^2$ floating strip	20 MeV protons	93:7	33	2×10^{-7}
$6.4 \times 6.4 \text{ cm}^2$ floating strip	88.83 MeV/u ¹² C	93:7	30	5×10^{-7}
$6.4 \times 6.4 \text{cm}^2$ floating strip	221.06 MeV/u protons	93:7	30	5×10^{-8}

Thank you!

Summary

floating strip principle works

- discharges: negligible effect on common high-voltage
- discharges are localized
- no damage/aging due to discharges

 \rightarrow ideal device to measure discharge rates with different gases at amplification fields suitable for MIP detection

measurements

- muon tracking in high-rate background (Bortfeldt, The Floating Strip Micromegas Detector, Springer 2015)
- tracking of high-energy pions
- tracking of ions at highest rates
- ion radiography (Bortfeldt et al., Low-Material-Budget FSM for Ion Transmission Radiography, VCI 2016)

detector	beam	gas Ar:CO ₂ [vol. %]	E_{amp} [kV/cm]	Pp
$6.4 \times 6.4 \text{ cm}^2$ floating strip	5.5 MeV alphas	93:7	37	10^{-1}
$9 \times 10 \text{ cm}^2$ standard	120 GeV pions	85:15	41	10-5
48 \times 50 cm ² floating strip	120 GeV pions	93:7	38	10-4
$6.4 \times 6.4 \text{ cm}^2$ floating strip	cosmic muons + 20 MeV protons	93:7	36	3×10^{-7}
$6.4 \times 6.4 \text{cm}^2$ floating strip	20 MeV protons	93:7	33	2×10^{-7}
$6.4 \times 6.4 \text{cm}^2$ floating strip	88.83 MeV/u ¹² C	93:7	30	5×10^{-7}
$6.4 \times 6.4 \text{cm}^2$ floating strip	221.06 MeV/u protons	93:7	30	5×10^{-8}

backup – Cosmic Muon Tracking under High-Rate Background Irradiation

questions:

- muon identification
- efficiency
- spatial resolution
- stability

floating strip Micromegas

- active area: $6.4 \times 6.4 \, \text{cm}^2$
- 128 strips, 300 µm width, 500 µm pitch
- 10 mm drift gap

reference tracking system

- two non resistive Micromegas
- two resistive Micromegas
- 2×3 trigger scintillators

proton background irradiation

- 20 MeV protons, 550 kHz
- lateral beam spot: $6 \times 0.5 \, \text{cm}^2$
- traverse detector \rightarrow signal on all strips

backup – Distinguishing Cosmic Muon and Proton Background Signals

Cosmic Muon + Proton Event

proton produces coincident signals on many strips

- muon signal similar to background
- use reference track for cluster selection

two event classes:

- only muon
- coincident muon and proton:
 - \rightarrow direct influence on signal

- event with muon only: \leq 6 clusters
- events with muon + proton: > 6 clusters
- \rightarrow distinguishable

backup - Cosmic Muon Tracking in High-Rate Background

residual distribution

spatial resolution

- muon detection in background possible
- occasionally background misinterpreted as muon

- no indirect effects as e.g. space charge
- only deterioration if muon and proton are coincident

efficiency

• expectation for complete blinding: $\varepsilon_{\rm irrad}/\varepsilon_{\rm no\,irrad}=0.617$

•
$$\varepsilon_{
m irrad}/arepsilon_{
m no\,irrad}=0.709$$

stability

- discharge rate 0.17 Hz
- inefficiency: 4.1×10^{-6}

backup - Ion Tracking with Thin Micromegas at Highest Rates

beams

- ¹²C @ 88 MeV/u to 430 MeV/u
 2 MHz to 80 MHz
- p @ 48 MeV to 221 MeV 80 MHz to 2 GHz
- thanks to S. Brons and the HIT accelerator team for the support

floating strip Micromegas

- $6.4 \times 6.4 \text{ cm}^2$ doublet
- low material budget $(FR4 + Cu \leq 200\,\mu\text{m})$

additional detectors

- $9 \times 9 \text{ cm}^2$ monitoring Micromegas with x-y-readout
- trigger on secondary charged particles

backup - Signals at Lowest and Highest Rate

 12 C, E = 430 MeV/u, 5 MHz

p, $E = 221 \, \text{MeV}, 2 \, \text{GHz}$

3 particles clearly distinguishable \rightarrow single particle tracking possible integration over \sim 800 coincident particles \rightarrow envelope of beam profile

20 40

500

-500-

164120 86420

time 125nsj

120 100

strips

80

60

backup - Rate Capability - Carbon lons

pulse height

oulse height [adc channels] Cbeam micom0 micom1 2500 ★ micom2 . 2000 4000 1500 3000 1000 2000 500 1000 0 10 20 30 40 50 60 70 80 mean particle rate [Hz]

- up to 80 MHz single particle tracks visible but not all of them separable
- only 20% reduction @ 80 MHz

reconstructed hits per event

• reconstruction of all particle hits up to $10 \text{ MHz} = 7 \text{ MHz/cm}^2$

- \rightarrow resolution well below 0.2 mm
- \rightarrow completely sufficient for ion transmission imaging

backup - Detection Efficiency vs Particle Rate

 ^{12}C , 88 MeV/u

p, 221 MeV

- low rates: single particle detection efficiency
- high rates: detector up-time

\rightarrow no efficiency & up-time reduction in floating strip Micromegas

backup – Ion Radiography at HIT

- first test of imaging system ٠
- commissioning of scintillator range telescope (18 ٠ layers)
- commissioning of 2d floating strip Micromegas
- commissioning of range telescope electronics •

ange [m 16

14

12

10

backup – Discrete & Integrated Floating Strip Micromegas

- exchangable Rs and Cs \rightarrow optimization possible
- more complicated assembly → soldering ×2 for each strip
- space requirements due to HV sustaining components → strip pitch limited to 0.5 mm

- anode strips: connected to HV via printable paste resistors
- readout strips: second layer of copper strips capacitive coupling through the board, intrinsically HV sustaining

backup - Possibility for Discharge Development

- if charge density exceeds $1.77 \times 10^8 \, e/\mathrm{mm}^2$
 - \rightarrow streamer development
 - \rightarrow well conducting plasma channel between mesh and strip(s)
- seem to be unavoidable
- localized
- limit the affected region!

