Measurements of ion mobility in argon- and neon-based gas mixtures

A. Deisting, C. Garabatos, A. Szabo, D. Vranic for the ALICE collaboration

GSI Helmholtzzentrum für Schwerionenforschung GmbH Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg

 9^{th} of March, 2016

- \triangleright lons created in a gaseous detector have a considerable impact on the detector performance:
	- \blacktriangleright High rates of primary ionisations & Ion back flow (IBF) from the gas amplification \rightarrow Ions build up of space charge in the drift volume
- Example: The upgraded ALICE Time Projection Chamber (TPC) @ LHC Run 3 (2020)
	- \triangleright R&D efforts to prevent IBF
	- \triangleright Correct for space charge due to the high rate of primary ionisations
	- \triangleright Simulations needed to predict the space charge and to test the correction procedures

$$
v_{\rm Drift} = K \cdot E
$$

 \Rightarrow To simulate space charges the knowledge of the ion mobility K is necessary.

Measurement procedure and detector $-1/2$

Measurement procedure and detector $-2/2$

- \blacktriangleright Set-up operated at atmospheric pressure
- \triangleright Measurements done in the low field region (hence $K \sim E$) and at reduced fields of $E_D/N < 10$ Td
- \blacktriangleright Mixing of up to three different gases possible
- \blacktriangleright All HV-channels supplied from an individual power supply

Verification of the inflection-point method

Using Garfield¹ the ion drift in a similar geometry as in the measurement is simulated.

The derivative of the signal peaks at the expected arrival time. (Known from the input parameters of the simulation.)

Proof of method with a modelling of the induced ion signal – K_{ana} : result of an analysis; K_{theo} : simulation parameter

¹R. Veenhof, *Garfield-simulation of gaseous detectors* (Cern Program Library W, 1984)

- \triangleright At different E values: Record GEM1 bottom and wire-grid signal
- From these signals the drift time and hence the mobility K is extracted.
- In Using the recorded temperature T and the pressure p, K_0 is calculated.

This is done for various gas mixtures of $Ar-CO₂$, Ne-CO₂ and Ne-CO₂-N₂. (In this gases just $\rm CO_2$ ions drift 2 .) Fitting a function according to Blanc's law 3 to the data of each gas mixture, gives the mobility in the pure gases.

Blanc's law

Correction to K_0

1 $\frac{1}{\mu_{\rm mix}} = \sum_i$ i f_i $\mu_{\rm i}$ $K_0 = K \times \frac{273.15 \text{ K}}{T}$ $\frac{3.15 \text{ K}}{T} \times \frac{p}{1 \text{ at}}$ 1 atm

 $2Y$. Kalkan et al., Cluster ions in gas-based detectors (Journal of Instrumentation, IOP Publishing, 2015) ³M. A. Blanc. *Mobilité des Ions*, (J. Phys. Theor. Appl., 1908)

Ion mobility in different $Ar-CO₂$ mixtures

Ion mobility in different $Ne\text{-}CO₂$ mixtures

- \triangleright K₀ smaller as compared to the Coimbra results
- \blacktriangleright Fitting Blanc's law to the data yields:

$$
\begin{array}{c|c}\n & K_0 \\
\hline\n\text{Ne} & (4.04 \pm 0.05) \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} \\
\text{CO}_2 & (0.98 \pm 0.04) \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}\n\end{array}
$$

- \triangleright K₀ in CO₂ agrees within 7% with the $Ar-CO₂$ measurement ⇒ Precision of the measurement
- 1/K₀ for different CO₂ concentrations in Ne $0.7 _{\square}$]2 [Vs/cm 01/K 0.6 0.5 0.4 0.3 This work (127ppm \leq H₂O \leq 247ppm) This work (45ppm $\leq H$ ₂O \leq 58ppm) 0.2 This work (400ppm $\leq H$, $O \leq 438$ ppm) 0.1 Coimbra $(H_O < 20$ ppm) NA49 (H O < 20ppm) 0 E ALICE IROC [4] (H₂O = 100ppm)
 $\frac{40}{50}$ 60 70 п 10 20 30 40 50 60 70 80 CO₂ concentration [%]
- \triangleright Water has an influence on the mobility

Results of other groups extracted from "Y. Kalkan et al.,Cluster ions in gas-based detectors (Journal of Instrumentation, IOP Publishing, 2015)" (Coimbra, NA49, ALICE IROC)

In the $Ne-CO₂$ (90-10) the influence of water contaminations on the ion drift was studied:

- \triangleright By changing the gas flow, the water content in the detector was changed.
- It was confirmed that H_2O has a significant influence on the mobility.
- \blacktriangleright For an increase of 100 ppm in water a decrease of by 5% in K_0 was found. However at some point $(H₂O \ge 400$ ppm) the dependence levels off.

^{&#}x27;ALICE IROC' data point extracted from "Y. Kalkan et al., Cluster ions in gas-based detectors (Journal of Instrumentation, IOP Publishing, 2015)"

 $1/K_0$ for different H_2O concentrations in NeCO₂ mixtures

- \blacktriangleright To Ne-CO₂ (90-10) different amounts of N_2 were added.
- \blacktriangleright Fitting a modified 'Blanc's law' function to the data points yields:

 K_0 $\text{Ne} \quad$ $(4.0 \pm 0.1)\,\text{cm}^2\,\text{V}^{-1}\,\text{s}^{-1}$ $\mathrm{CO}_2\;\:\big\lVert\; (1.0\pm0.3)\,$ cm 2 V $^{-1}$ s $^{-1}$ $\mathrm{N}_2 \quad \Big\| \, \left(1.8 \pm 0.1 \right)$ cm 2 V^{-1} s $^{-1}$

 \blacktriangleright This is in good agreement with our previous results.

'ALICE IROC' results extracted from "Y. Kalkan et al., Cluster ions in gas-based detectors (Journal of Instrumentation, IOP Publishing, 2015)"

Conclusions

- \triangleright A set-up to measure the mobility of ions was built and successfully commissioned.
- \triangleright With Garfield simulations it is shown that differentiation of the signal induced by ions on a wire grid allows to determinate the time ions arrive there.
- \triangleright The mobilities measured in Ar-CO₂ were found to be consistent with previous publications. However, compared to results obtained by the Coimbra group, the measured mobilities are up to 20 % lower. Such a difference may be explained by different H_2O contents.
- In The presence of water decreases the mobility in $Ne\text{-}CO_2$ (90-10) and (80-20) an admixture of 100 ppm water leads to a decrease of 5% in K_0 .
- A Measured mobilities in cm² V⁻¹ s⁻¹:

Backup

Starting from primary ionisations in the detector:

- 1. Ions from the gas amplification drift towards GEM1.
- 2. The GEM1 bottom signal serves as trigger as it peaks the ions enter the drift volume.
- 3. During the movement of the ions through the drift volume, a signal on a wire grid is induced. As the ions pass through the grid the signal amplitude changes polarity. The inflection point of the ion signal serves as an indicator for the arrival time of the ions. **EXECT 1** lons from the gas amplification drift towards GEM1.

2. The GEM1 bottom signal serves as trigger – as it

peaks the ions enter the drift volume.

3. During the movement of the ions through the drift

volume, a si

The time difference between the trigger signal and the

- \triangleright Two dimensional simulations (coordinate in drift direction: z ; x perpendicular to z)
- \triangleright Create two random x values from an uniform distribution
- \triangleright Optional: Create two random z values from a distribution with mean $z = 0$
- \blacktriangleright Place 10 ions along the track between the coordinates
- \triangleright Drift the ions towards the cathode(s)
- \triangleright Repeat this 300 times, average the obtained signals and normalise these to the signal of one ion

Caveats

- \triangleright Diffusion not implemented
- \triangleright lon mobility an external parameter (to be set by the user)
- \blacktriangleright The performance of ion drift depends highly on the set parameters

Parallel plane geometry vs. one plane and an infinite grid

$$
v = \mu E
$$
 \rightarrow $t = \frac{s(2 \text{ cm})}{E(1000 \text{ V cm}^{-1}) \times \mu(1.77 \text{ cm}^2 \text{ V}^{-1} \text{s}^{-1})} = 1.13 \text{ ms}$

- \triangleright Two parallel planes, signal readout at the cathode
- \triangleright The cathode-plane was replaced with a wire-grid. (Gaussian distribution of ions in z implemented.)
- \blacktriangleright The peak arises because of ions getting accelerated and changing direction as they approach the grid
- \triangleright Overall rising slope in the blue \rightarrow Field not completely homogeneous anymore

Parallel plane geometry vs. one plane and an infinite grid

$$
v = \mu E
$$
 \rightarrow $t = \frac{s(2 \text{ cm})}{E(1000 \text{ V cm}^{-1}) \times \mu(1.77 \text{ cm}^2 \text{ V}^{-1} \text{s}^{-1})} = 1.13 \text{ ms}$

- \triangleright Two parallel planes, signal readout at the cathode
- \triangleright The cathode-plane was replaced with a wire-grid. (Gaussian distribution of ions in z not implemented.)
- \blacktriangleright The peak arises because of ions getting accelerated and changing direction as they approach the grid
- \triangleright Overall rising slope in the blue \rightarrow Field not completely homogeneous anymore

