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Motivation

» lons created in a gaseous detector have a considerable impact on the detector
performance:

» High rates of primary ionisations & lon back flow (IBF) from the gas amplification —
lons build up of space charge in the drift volume

» Example: The upgraded ALICE Time Projection Chamber (TPC) @ LHC Run 3 (2020)

» R&D efforts to prevent IBF
» Correct for space charge due to the high rate of primary ionisations
» Simulations needed to predict the space charge and to test the correction procedures

Voritt = K - E

= To simulate space charges the knowledge of the ion mobility K is necessary.
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Measurement procedure and detector — 1/2
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Measurement procedure and detector — 2/2
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Set-up operated at
atmospheric pressure

Measurements done in the
low field region (hence
K ~ E) and at reduced
fields of Ep/N < 10 Td

Mixing of up to three
different gases possible

All HV-channels supplied
from an individual power

supply



Verification of the inflection-point method

Using Garfield® the ion drift in a similar geometry as in the measurement is simulated.
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'R. Veenhof, Garfield-simulation of gaseous detectors (Cern Program Library W, 1984)
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Proof of method with a modelling of the
induced ion signal — Kyna: result of an
analysis; Kipeo: simulation parameter




Measurement procedure

» At different E values: Record GEM1 bottom and wire-grid signal
» From these signals the drift time and hence the mobility K is extracted.
» Using the recorded temperature T and the pressure p, Kj is calculated.

This is done for various gas mixtures of Ar-COj, Ne-CO3 and Ne-CO»-Ny. (In this gases

just CO, ions drift?.) Fitting a function according to Blanc’s law® to the data of each gas
mixture, gives the mobility in the pure gases.

Blanc's law Correction to Kj

1 f 273.15K
i z,: i Ko =Ko X Totm

2Y. Kalkan et al.,Cluster ions in gas-based detectors (Journal of Instrumentation, IOP Publishing, 2015)
3M. A. Blanc, Mobilité des lons, (J. Phys. Theor. Appl., 1908)
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lon mobility in different Ar-CO, mixtures

1/K, for different CO, concentrations in Ar
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of Instrumentation, IOP Publishing, 2015)" (Schultz)
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lon mobility in different Ne-CO, mixtures

1/K, for different CO, concentrations in Ne
» Ko smaller as compared to the 0 2
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Influence of water on the ion mobility

In the Ne-CO2 (90-10) the influence of water contaminations on the ion drift was studied:
1/K, for different H,O concentrations in NeCO, mixtures

» By changing the gas flow, the %0-44; B Ne-CO, (90-10)
water content in the detector c\>n 0.42;— | { Ne-CO, (80-20)
was changed. E’D 0_4? | ‘ O ALICE IROC: Ne-CO, (90-10)
» It was confirmed that HyO has = o038
a significant influence on the 036} + +
mobility. 0.34]—
» For an increase of 100 ppm in 0.32|~ + D+ +
water a decrease of by 5% in 03[
Ko was found. However at 0'28;”‘1‘”wuuwHH\HH\HH\HH\HH
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'ALICE IROC’ data point extracted from "Y. Kalkan et al.,Cluster ions in gas-based
detectors (Journal of Instrumentation, IOP Publishing, 2015)"

the dependence levels off.
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Influence of Ny in Ne-CO, (90-10)

1/K, for different N, concentrations in Ne-CO, (90-10)
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detectors (Journal of Instrumentation, IOP Publishing, 2015)"
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Conclusions

v

A set-up to measure the mobility of ions was built and successfully commissioned.

» With Garfield simulations it is shown that differentiation of the signal induced by ions
on a wire grid allows to determinate the time ions arrive there.

» The mobilities measured in Ar-CO, were found to be consistent with previous
publications. However, compared to results obtained by the Coimbra group, the
measured mobilities are up to 20 % lower. Such a difference may be explained by
different H>,O contents.

» The presence of water decreases the mobility in Ne-CO3 (90-10) and (80-20) — an
admixture of 100 ppm water leads to a decrease of 5% in Kj.

» Measured mobilities in cm2V—1s~1:

Ko(CO2) measured in H Ar ‘ Ne ‘ N» ‘ COq
Ar-COg 1.92 +0.02 0.95+0.02
Ne-COq 4.04 +0.05 0.98 £ 0.04
Ne-CO, (90-10) N 40+£01 | 18+01| 1.0+0.3
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Measurement procedure explained

Mesh

Starting from primary ionisations in the detector: R 7‘ ---------
s . . H @ rid signa
1. lons from the gas amplification drift towards GEM1. g eridsignal
2. The GEM1 bottom signal serves as trigger — as it £ 0
peaks the ions enter the drift volume. ==
. . . PAYS S
3. During the movement of the ions through the drift e A; ~ bettom
volume, a signal on a wire grid is induced. ® ® signal
As the ions pass through the grid the signal amplitude o
changes polarity. The inflection point of the ion signal o1 —
rid signa

serves as an indicator for the arrival time of the ions. Ditterentintsd srid dgnal
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The time difference between the trigger signal and the o2
inflection point is measured as the ion drift time.
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Procedure with Garfield:

» Two dimensional simulations (coordinate in drift direction: z; x perpendicular to z)
» Create two random x values from an uniform distribution

» Optional: Create two random z values from a distribution with mean z = 0

» Place 10 ions along the track between the coordinates

» Drift the ions towards the cathode(s)

> Repeat this 300 times, average the obtained signals and normalise these to the signal
of one ion
Caveats

» Diffusion not implemented
» lon mobility an external parameter (to be set by the user)

» The performance of ion drift depends highly on the set parameters
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Parallel plane geometry vs. one plane and an infinite grid

s(2cm)

v=pE — t=

» Two parallel planes, signal readout at the
cathode

» The cathode-plane was replaced with a
wire-grid. (Gaussian distribution of ions
in z implemented.)

» The peak arises because of ions getting
accelerated and changing direction as
they approach the grid

» OQverall rising slope in the blue — Field
not completely homogeneous anymore
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Parallel plane geometry vs. one plane and an infinite grid

s(2cm)

v=pE — t=

» Two parallel planes, signal readout at the
cathode

» The cathode-plane was replaced with a
wire-grid. (Gaussian distribution of ions
in z not implemented.)

» The peak arises because of ions getting
accelerated and changing direction as
they approach the grid

» Qverall rising slope in the blue — Field
not completely homogeneous anymore
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