

DISCHARGES IN MICROMEGAS & EFFECT OF GEM

NB: studies performed from 2009 to 2011...

Sébastien Procureur CEA-Saclay

Study of discharges in gases is a looong story

Von Guericke, (Picard priest,) Hauksbee, ..., Paschen, Townsend, ..., Raether, ...

2 different mechanisms

 Townsend mechanism: slow, related to 2^{ndary} avalanches (γ coefficient, see HDR)

Serious issue for Micro Pattern Detectors since MSGC...

... and well known problem in beams for Micromegas starting with Compass exp.

DISCHARGES IN MM: HISTORIC MEASUREMENTS

First systematic study by Thers et al. in 2001

- Usually no ageing of the Micromegas due to discharges
- But dead time associated to the HV drop (charge loss)

Precise measurements in CERN/PS beam line

- Rate proportional to beam intensity
 ⇒ Can use discharge probability per particle P
- P exhibits a power law dependence with gain G
- P is gas dependent (Z)
 - \Rightarrow Neon instead of Argon
- Much higher in hadrons wrt muons
- Independent on beam energy in 3-15 GeV range

Origin?

counter-examples...

Cannot originate from ionization/avalanche fluctuations

Investigate secondary particle production with a Geant4 model of the MM

→ (rare) occurrence of « catastrophic » events with HIPs production in nuclear collisions with MM material (required large simulations)

 \Rightarrow Energy above 1 MeV (2,000 MIPs) can be released!

→ rough estimate of the discharge probability by integrating E_{dep} on small volumes, and compare it with the Raether limit

$$P(G) = \int_{E_{dep}=N_R \times w_i/G}^{\infty} f(X) dX$$

• No precise treatment of transverse diff.

Threshold effect at the Raether limit

S. Procureur

DE LA RECHERCHE À L'INDUSTRI

ORIGIN OF DISCHARGES

Pope

Interesting results:

- Power law dependence with the same slope
- Quantitative agreement with reasonable Raether limit
- (Partly) reproduces the gas effect

Many questions/mysteries to solve

- \rightarrow dependence on the material (e.g. with thicker meshes of bulk)?
- \rightarrow dependence on the beam energy and type (e.g. CLAS12 vs COMPASS...)
- → dependence on magnetic field, and more generally transverse diffusion?
- \rightarrow effect of a GEM foil in the reduction of the discharge probability?

\Rightarrow Organization of a series of beam tests in different conditions

DE LA RECHERCHE À L'INDUSTR

DISCHARGES AND BEAM TYPE

15 GeV π (Thers)

0.2 to 3 GeV/c π^+ , π^- , p

150 GeV π

Photon beam on CH_2 , B field

RD51, 11/03/2016

DISCHARGES AND BEAM TYPE

Detailed Geant4 simulation of the setups

DISCHARGES AND BEAM TYPE

Additional measurements with B field and hybrid MM-GEM detectors

Systematic measurements during PS tests, with ≠ transfer gaps h (1 and 2 mm)

- P reduction already at small G_{GEM} 1)
- No effect of h at moderate G_{GEM} 2)
- Effect of h at larger G_{GEM} 3)
- Saturation of the reduction at large G_{GEM} 4)
- Change of slope at large G_{GEM}

G. Charles et al.

```
NIM A648 (2011), 174
```

Modification of the model to take into account the transverse diffusion

- \rightarrow discharge criterion on the charge density
- [NB: Raether limit derived for (and in) a single avalanche]

drift electrode

Results of the simulation:

- \Rightarrow The 5 effects observed are reproduced, in particular:
- Low G_{GEM}: discharges from (a) are favoured
 - \Rightarrow No effect of transfer gap size
- Increasing_G_{GEM} at fixed gain suppresses discharges (a)
 - \Rightarrow Progressive reduction of spark rate
- At large enough G_{GEM} , discharges from (b) are dominant \Rightarrow Larger transfer gap further reduces P

Comparison with the data @ intermediate G_{GEM} (x30)

$$d_s^{lim} = 2 \times 10^9 \ el/mm^2$$

S. Procureur *et al.*, JINST 7 C06009 (2012)

[NB: change of slope due to E_{dep} distribution, enhances the discharge reduction in GEM]

 \Rightarrow Quantitative explanation of the strong discharge reduction with GEM

CONCLUSION

- \rightarrow Origin of sparks with hadrons quantitatively understood in Micromegas
- \Rightarrow Related to large energy deposits in the detector, often from secondaries
- \Rightarrow Well compatible with Raether limit in cases where transverse diffusion effect can be neglected
- \rightarrow Validity of the model has been checked from 0.3 to 150 GeV/c
- \Rightarrow Can use Geant4 to make predictions in a given configuration
- \rightarrow Measurements of the B effect (up to 1.5 T for B₁, 5 T for B₁)
- \rightarrow Validity of the simulation extended to GEM foils by taking into account trans. diff.
- ⇒ Spark data interpreted in terms of (surface) charge density instead of « naive » Raether limit
- \Rightarrow Quantitative description of the effect of a GEM in the spark rate reduction

DE LA RECHERCHE À L'INDUSTRIE

BACKUP

