Netherlands eScience Center

... and the physics community

Daniela Remenska eScience engineer

Science center

HSF workshop Orsay, May 2016

Netherlands eScience Center = digitally enhanced Science

NLeSC in summary

- Our core technical expertise areas:
 - Optimized Data Handling, Big Data Analytics, Efficient computing
- We cover "all" of research:
 - Environment & Sustainability, Life Sciences,
 Humanities, Social Sciences, Physics & Beyond
- We are all about open-source & open access!
 - Re-use community solutions, enforce good SE practices
- We parallel the HEP Software Foundation in a way

iDark
The intelligent Dark Matter Survey

AA-ALERT

Access and Acceleration of the Apertif Legacy Exploration of the Radio Transient Sky

Collaborative Statistical Models Large scale statistical data analysis in particle physics

Real-time detection of neutrinos from the distant Universe Observing processes that are inaccessible to optical telescopes

Giving Pandas a ROOT to Chew on Modern Big Data front and backends in the hunt for Dark Matter

Compressing the sky into a large collection of statistical models
Optimized data handling for observations in astronomy

Beyond the Data Explosion

An eScience infrastructure for huge interferometric datasets

PROMIMOOC
Process mining for multi-objective online control

Modern Big Data front and backends in the hunt for Dark Matter

WARNING:hax.paxroot:Root file /mnt/xecluster/archive_lngs/common/PaxReprocessed_9/good/xe100_111 110_1127.root does not include pax event class. Normal for pax < 4.5.Falling back to event class for pax 430.

WARNING:hax.paxroot:Root file /mnt/xecluster/archive_lngs/common/PaxReprocessed_0/good/xe100_111

WARNING:hax.paxroot:Root file /mnt/xecluster/archive lngs/common/PaxReprocessed $9/good/xe100 \ 11110 \ 1127.root$ does not include pax event class. Normal for pax < 4.5.Falling back to event class for pax 430

Created minitree Basics for dataset xel00_111110_1127
Created minitree NewDriftTime for dataset xel00_111110_1127

data is now a pandas DataFrame containing basic info (see below) for all the events. For more details, and instructions on how to select your own variables, see the hax tutorial. Here is a look inside the data we just loaded:

In [10]: data.head()

Out[10]:

:		index	cs1	cs2	dataset_number	drift_time	event_number	event_time	largest_coi
	0	0	533.132248	117434.248258	1111101127	102700.195312	0	1320920877023216128	0
	1	1	NaN	NaN	1111101127	NaN	1	1320920877024649984	0
	2	2	916.212603	89846.426385	1111101127	159293.125000	2	1320920877028420096	0
	3	3	NaN	NaN	1111101127	NaN	3	1320920877029669120	0
	4	4	337.785598	32902.233486	1111101127	160682.093750	4	1320920877032971008	0

5 rows × 22 columns

We'd like to have the drift time in us, and the S2 area on the bottom. Let's compute these from the basic variables:

```
In [12]: drift_time = data['drift_time_2'].values / units.us
s2_bottom = data['s2'].values * (1 - data['s2_area_fraction_top'].values)
```

Exploratory analysis

Before fitting, let's have a first look at the data we have:

Figure 1: A first look at the data

X E N O N

Modern Big Data front and backends in the hunt for Dark Matter

X E N O N
Dark Matter Project

Modern Big Data front and backends in the hunt for Dark Matter

root_pandas: ROOT I/O for Pandas

pandas should read ROOT files

rootpy: Pythonic ROOT

Truly "Pythonic" ROOT interface

PyROOT:

A Python -- ROOT Bridge

Python bindings for ROOT

C++


```
from rootpy.tree import Tree, TreeModel
from rootpy.tree import FloatCol, IntCol
                                                class ReconstructedPosition(object):
from rootpy.tree import FloatArrayCol, CharCol
                                                    x = float('nan')
from rootpy.io import root_open
                                                    y = float('nan')
from random import gauss, choice
f = root_open("test.root", "recreate")
                                                class Peak(object):
# define the model
                                                    area = 0.0
class Event(TreeModel):
                                                    detector = 'ptc'
    s = CharCol()
   x = FloatCol(default = 'nan')
                                                    rec_positions = list(ReconstructedPosition)
    v = IntCol(default = 0)
   f = FloatArrayCol(5)
                                                class Hit(object):
tree = Tree("test", model=Event)
                                                    channel = 0
# fill the tree
                                                    center = 0.0
for i in range(5):
    tree.s = ord(choice(ascii_letters))
                                                class Event(object):
   tree.x = gauss(.5, 1.)
                                                    event_number = 0
   tree.y = i
                                                    dataset_name = 'Unknown'
   for j in range(5):
       tree.f[j] = gauss(-2, 5)
                                                    peaks = list(Peak)
    tree.fill()
                                                    hits = np.array([], dtype=Hit.get_dtype())
tree.write()
f.close()
                                                        Listing 2: The pax Event model
```

Listing 1: Creating tree models with rootpy

Modern Big Data front and backends in the hunt for Dark Matter

ROOT in the Anaconda Cloud

- goal: conda install root={5,6} python={2,3}
 - no-sudo
 - cross-platform
- Conda: packaging, dependency & environment management system
 - Not really python-specific

conda-recipes / python / gensim / meta.yaml

```
package:
  name: gensim
  version: 0.8.8
source:
  fn: gensim-0.8.8.tar.gz [py2k]
 url: https://pypi.python.org/packages/source/g/gensim/gensim-0.8.8.tar.gz
  md5: 39b47095185f05a01b83ebf1a6748953 [py2k]
# patches:
   # List any patch files here
   # - fix.patch
build:
  number: 1
requirements:
  build:
    - python
    - setuptools
    - scipy
 run:
   - python
   - scipy
test:
 # Python imports
 imports:
   - gensim.similarities
   - gensim.test
   - gensim.corpora
   - gensim.models
about:
 home: http://radimrehurek.com/gensim
  license: GNU Library or Lesser General Public License (LGPL)
```

conda-recipes / python / gensim / build.sh

#!/bin/bash

\$PYTHON setup.py install

Modern Big Data front and backends in the hunt for Dark Matter

Portable ROOT conda binaries

- dynamic dependencies on GCC/glibc
- ROOT 6 needs GCC 4.8 or newer
- should work on older Linux distributions
 - preferably the same binary (one size fits all)
 - SLC 6 + CERN Developer Toolset (v2) makes it possible to have fresh compiler with old glibc (2.12)
- Please give it a try and report problems

conda install -c nlesc root

https://github.com/nlesc/root-conda-recipes

X E N O N
Dark Matter Project

Modern Big Data front and backends in the hunt for Dark Matter

Real-time detection of neutrinos from the distant Universe

Trigger based purely on L0 hits

Challenging: amount of data+combinatorics...
Can we compare each hit with all other hits?

Real-time online event reconstruction

Clique algorithm on GPU: find largest causally related

set in a group

... and more HEP NLeSC projects

Automated Parallel Calculation of Collaborative Statistical Models Large scale statistical data analysis in particle physics

- RooFit: statistical models of measurements performed by independent teams combined a posteriori without loss of detail
- scaling issues
- parallel algorithms / new data structures needed
- Combine the worldwide data within the most general models of Dark Matter
- algorithms to find (tiny, fragmented) solution areas in large multidimensional parameter spaces
- make a (web-accessible) largely automated
 "DM model" database

iDark
The intelligent Dark Matter Survey

