

Overview of Recent Developments in ROOT/TMVA

S. Gleyzer (University of Florida), Lorenzo Moneta (CERN), O. Zapata (Metropolitan Institute of Technology & University of Antioquia)

HSF Workshop, Orsay Paris, 2-4 May 2016

Outline

- Introduction
- Present status of TMVA
- New tools added last year
- Features added recently
- Overview of current progress
- Future planned improvementsConclusions

Introduction

- Community effort to improve ML tools in HEP
- Identified area of improvements
 - Inter-experimental Machine Learning working group
 - with participation of CERN SFT
 - endorsed by all LHC experiments
 - see following IML presentation by Sergei and Steven
- New developments happening recently in ROOT / TMVA are resulting from this effort

Document on the Future of TMVA

- Meeting in September to discuss future of TMVA.
- Written a draft document
 - see <u>http://iml.cern.ch/tiki-download_file.php?fileId=1</u>
- Core Requirements
 - maintain a set of core algorithms for HEP standard usage.
 - Interface to R and Python for high performance use (to allow using modern ML packages)
 Done
 - Facilitate workflow with external packages (e.g. DNN packages)
 - external training and apply their results in TMVA In progress
 - support exporting of input ROOT data to external packages and importing their results in TMVA
 In progress

Requirements for TMVA

Flexibility

• re-design for more modularity and for decoupling datasets/methods/variables **Done**

Computation Performances

- improve algorithms performance by optimising code, using vectorization and parallelisation
 In progress
- Revised DataSet I/O
- optimising memory usage
- Desired New Features
 - Cross Validation
 Hyper-parameter tuning
 Additional Information for Analyser (Feature Importance)
 Parallelisation and GPU support
 Support for alternative input files (e.g. HDF5)
 Not started
 Started

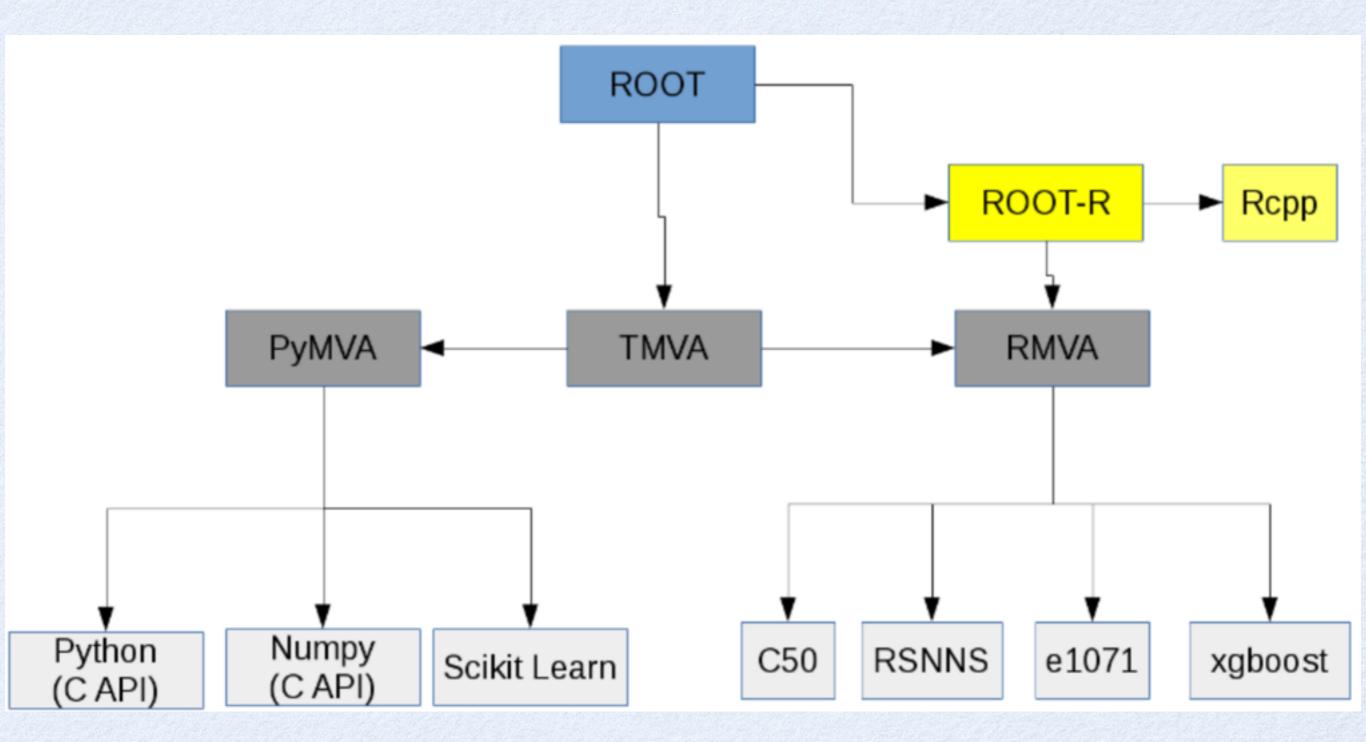
In progress Not started In progress

New ML Tools added in TMVA

- Overview of tools added recently in ROOT/TMVA
 - Last Year
 - DataLoader
 - Interface to Scikit-Lear (PyMVA)
 - Interface to R (RMVA)
 - Feature Importance
 - This Year
 - Deep Neural Network,
 - Improved SVM
 - Cross Validation and hyper-parameter tuning

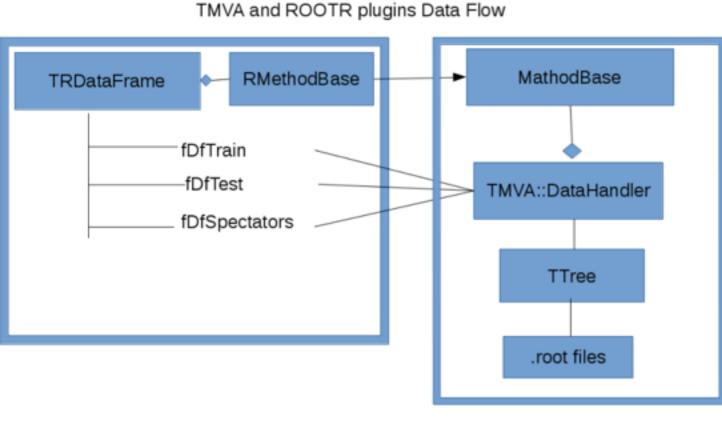
TMVA DataLoader

• **DataLoader** is a new class that allows greater flexibility when working with datasets. It is an interface to


- load the datasets
 - root files (TTrees) but can be extended to other types (e.g. CSV, HDFS)
- add variables

 TMVA Factory links DataLoader with a specific MVA method when booking

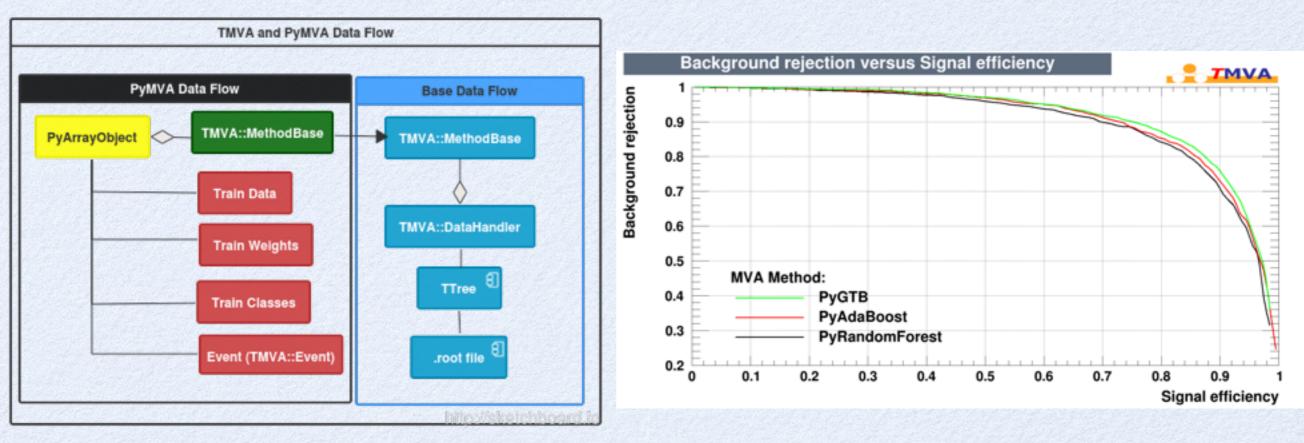
• Obtained desired flexibility in de-coupling methods/dataset/variables



Interfaces to R and Python

R-TMVA

- Interface R methods for Machine Learning in TMVA
 - use new ROOT-R package (allows to use R within ROOT)
 - set of plugins for TMVA based on R packages for regression and classification
 - available methods: C50, SVM(e1071), RSNNS, XgBoost


 Map ROOT data in a R data frame (TRDataFrame)

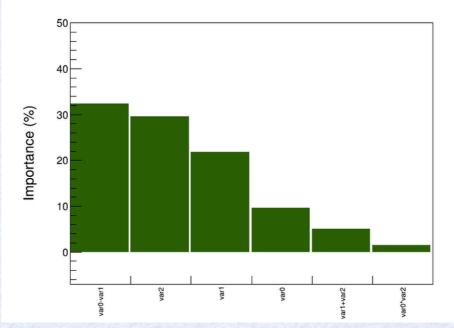
 Implement new R methods as derived class of TMVA::MethodBase

Available from ROOT 6.05.02. See doc at <u>http://oproject.org/tiki-index.php?page=RMVA</u>

- Interface to use Python ML tools from TMVA
 - Use methods from Scikit-Learn package
 - Random Forest, Gradient Tree Boost, Ada Boost
 - Convert input ROOT data in PyArrayObjects (C interface to numpy)
 - Use directly Python from C++ using its C interface

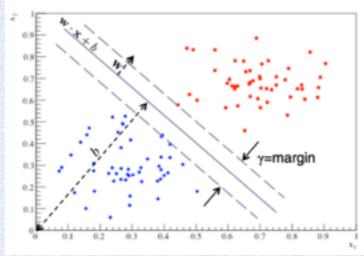
See http://oproject.org/tiki-index.php?page=PyMVA

code available from ROOT 6.05.02 !

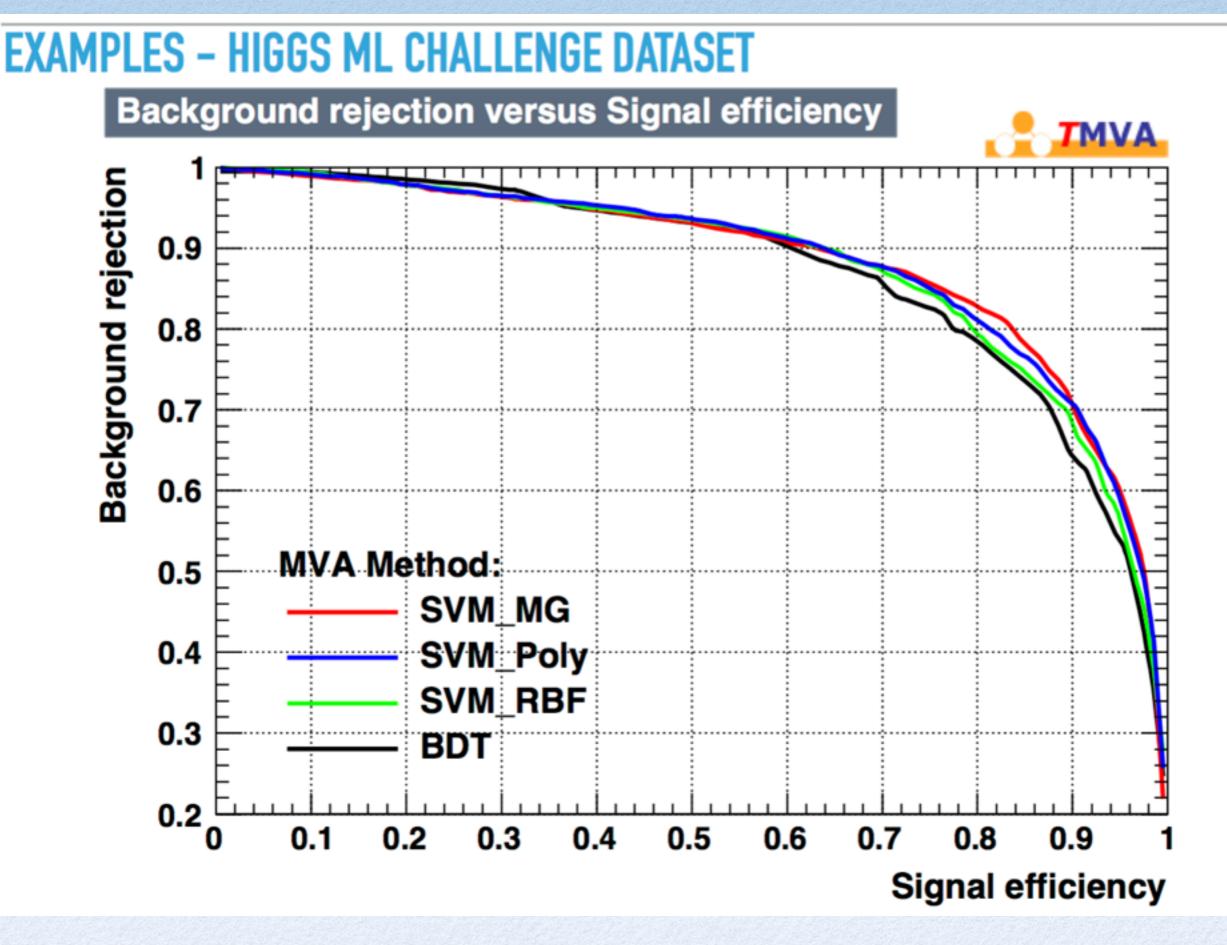

Feature Importance

- Ranks the importance of features based on contribution to classifier performance
 - A stochastic algorithm independent of classifier choice

$$FI(X_i) = \sum_{S \subseteq V: X_i \in S} F(S) \times W_{X_i}(S)$$

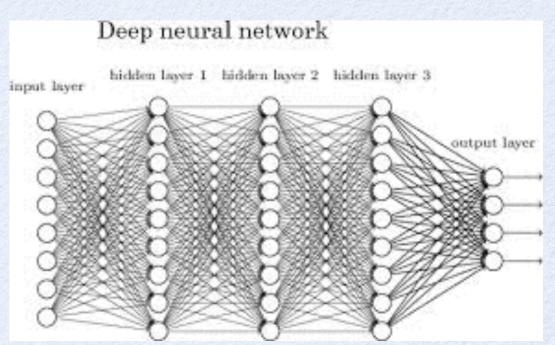

$$W_{X_i}(S) \equiv 1 - \frac{F(S - \{X_i\})}{F(S)}$$

- Feature set {V}
- Feature subset {S}
- Classifier Performance F(S)



Improved SVM

- Additional functionality for SVM included in TMVA (work by *T. Stevenson* and *A. Bevan*)
 - New Kernel functions:
 - Multi-Gaussian, Polynomial and support for product and sum of kernel functions



- Implemented Parameter optimisation for kernel parameters and cost
 - Cost weighted to signal/background events
- Loss function (implemented but not currently used)

Deep Learning

- New Deep Learning classes added recently in TMVA (ROOT master version)
 - originally written by P. Speckmayer
 - optimisation in progress by TMVA developers
- Contains some recent developments in the field
 - Stochastic Gradient Descent (SGD)
 - Multithreading training support
 - Weight initialisation
 - drop-out
 - momentum

Cross Validation

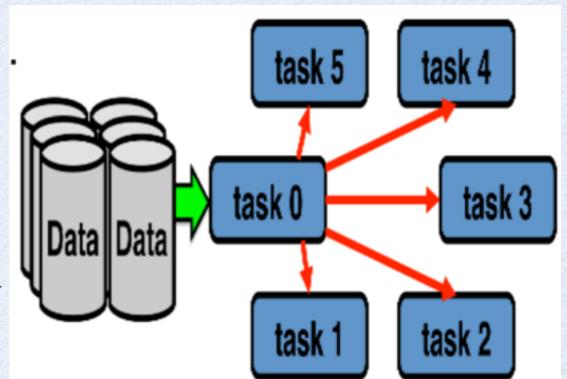
k-fold cross-validation

Dataset						
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5		Fold k

- with optional hyper parameter tuning
- Implemented as standalone version by *T. Stevenson*
- Integrated now into TMVA
 - soon with support for parallel execution (Spark and multi-processes)

Upcoming New Features

- Improvements currently undergoing in TMVA :
 - Better separation of classification and regression classes
 - Improve regression
 - e.g. add option for different loss functions
 - Improve performance and memory usage
 - optimised code, usage of SIMD vectorisation, etc...
 - Greater support for parallelisation
 - removal of static variable to avoid concurrency problems


Parallelization

On-going parallelization work:

- Parallelise multiple methods booked into the factory when training and testing
- Parallelization of cross validation and hyper-parameter tuning
- Internal parallelization of methods whenever possible

• Using Technologies:

- ROOT MultiProcess using fork (TMultiProc)
- Multi-Threads using tbb (ThreadPool)
- Cluster parallelisation using Spark
- GPU

ROOT-Book Integration

Additional integration with Jupiter notebooks (ROOT-Books)

- ROC plots (already done)
- Classifier structure visualisation
- Plots on demand and integration with TMVA GUI
- Python support
- Useful for interactive analysis
 - e.g. using **SWAN**: Service for Web based Analysis

SWAN

SWAN: Service for Web based Analysis

- Platform independent: only with a web browser
 - Analyse data via Jupyter Notebook web interface
 - No need to install and configure software
- Integrated in CERN services' portfolio
- Calculations "in the cloud"
- Allow easy sharing of scientific results: plots, data, code (EOS, CERNbox)
- Simplify teaching of data processing and programming
- Eases analysis reproducibility
- C++, Python and other languages or analysis "ecosystems"
 - Interfaced to ROOT, TMVA, R...

swan.web.cern.ch

upyter

Future Improvements in TMVA

Persistency of methods

- use general ROOT I/O (and not be limited to XML) for output of training
- import output from training performed from external packages (e.g. Scikit, Theano, etc..)

Data Input

- support for different input data sets (e.g. HDF5)
- improve data handling classes in TMVA to avoid copying all data in memory

New GSOC Projects in TMVA

- 5 students this summer supported by Google (Google Summer of Code program) working on ROOT Machine Learning tools
 - Improvement of pre-processing layer
 - Parallelisation of DNN and porting to GPU (OpenACC, OpenCL, CUDA)
 - Asynchronous parallel implementation of Stochastic Gradient Descent
 - Compression of DNN and porting them to GPU
 - Cluster parallelization using Spark
 - using PySpark (Python API to Spark)
 - Further integration of TMVA in Jupiter notebook
 - Javascript TMVA GUI, interactive training mode

Conclusions

- Many recent developments are happening in ROOT/TMVA
 - new features, new interfaces and various improvements
 - we are innovating TMVA with the community and under the scope the IML
 - strong growing development team
- Feedback on the new features is very welcomed !
- Easy to contribute
 - everybody interested is welcomed to join the development team
 - or can contribute via pull requests on ROOT github: <u>https://github.com/root-mirror/root</u>