OROOT

Data Analysis Framework

Quest for Performance in ROO'T

HSF Workshop, LAL, Orsay 2-4 May 2016
Pere Mato/CERN on behalf of the ROOT Team

Outhne

* The 8 Dimensions of Performance
* Main Challenges
* Performance Monitoring

* Exploiting Vectorization

* Exploiting Multi-processing

* Exploiting Multi-Threading

* Exploiting Multi-Node
* Code optimizations: modules, modern C++, JIT, etc.

+* Conclusions

ROOT

The 8 Dimensions of Performance

© Sverre Jarp '

* The “dimensions of performance” also for ROOT

oo

oo

<

Vectors . . .

_ Micro-parallelism: gain in
Instruction Pipelining throughput and
Instruction Level Parallelism (ILP) in time-to-solution
Hardware threading Very little gain to be
Clock frequency , expected and no action to
Multi-core Redaken
Multi-socket § _, Gain in memory footprint
el and time-to-solution

UJ_ l-nO e

but not in throughput
\ Possibly running different
jobs (PROOF-like) as we do

now is the best solution

ROOT Main Challenges

#* ROQT is 20 years old, and some parts require re-engineering and
modernization

* Need to exploit modern hardware (many-core, GPU, etc.) to boost
performance

+ Modernize implementations (C++11/14 constructs, use existing libraries,
etc.)

* Modernize C++ API to improve robustness eventually giving up on
backward /forward compatibility

* Require the collaboration of the community to ensure evolution and
sustainability

+ Facilitate contributions to ROOT without engaging our responsibility in
the maintenance and user support

* Layered software modules or plugins that can bring new functionality to
the end-users

J ROO ;

Data Analysis Framework

Improving Performance of ROOT

* ROOT will evolved and undertake the necessary changes to improve
performance in any area that will be possible

* The strategy is to be transparent to the user whenever possible

* Deliver more computation with the same or even simpler user
interface

* Hide complexity as much as possible

* Ambitious program for both making parallelism "endemic" within
ROOT itself and for providing components to help users expressing
parallelism

* The roadmap foresees the utilisation of different parallelisation
strategies for different problems, qualified by their scale, amount of
legacy code, affordable overhead

Data Analysis Framework

Measuring Performance

* Improvement is not possible without measurement

* ROOT could benefit from common profiling strategies and tools
shared with the experiments.

+ The experience with IgProf has been shown to be a perfect example
of the sharing of such strategies and tools achieving concrete and
numerous results during the integration of ROOT6 with CMS and
ATLAS.

* A continuous profiling etfort of experiments' data processing “candles
is immediately beneficial for all building blocks of the experiments'
software stacks:

"

+ Time and memory allocated per function
+ Possibility to inspect memory allocation patterns

& Im&act of serial code
i

Data Parallelism - Vectorization

* Exploit the SIMD instructions available in modern microprocessors
* Targeting mainly the Math Libraries in ROOT
* Function evaluation with vector interface (Vc)

+ Likelihood calculations, fitting, etc.

* Histogramming

* Use types in the VecCore library, which embeds low-level support for
vectorization, in the ROOT Liner Algebra classes

* Re-implement the geometry package TGeom in terms of the VecGeom
library developed in the context of GeantV

Data Analysis Framework

Mulu-Processing

* Seamless parallelisation (no contention issues) of legacy code

* Unique case in C++ landscape thanks to serialisation capabilities
(even without dictionaries thanks to CLING)

* PROOF is playing an important role in speedup analysis. Several
flavors:

* PROQOF-Lite (optimized for single many-core machines)
* Dedicated PROOF Analysis Facilities (multi-user)
* PROOF on Demand (single-user)

* New TProcPool utility, analogies with modern data science, map/
reduce, integration with TTree and ROOT ecosystem.

‘ Data Analysis Framework

MuluProc package

* Developed a new lightweight framework for multi-process

applications

* Inspired by the Python multiprocessing module

* Idea to re-implement Proof-Lite using it

+ Distribute work to a number of fork()’'d workers, t!

* Main advantage: workers have access to com;

defaults to # of
cores

loaded macro

std::function
lambda

] C/C++ function

std:vector or | TPFOCP0OOL pool(8)
TObjArray

auto result = pool.Map(fun, args);

auto result

nen collect results

o)

ete ‘master’ state

std::container
initializer list
TCollection&

unsigned N ‘

Reduce function]

pool.MapReduce(fun, args, redfun); J

Data Analysis Framework

Mulu-"Threading

* Complete abstraction from the ROOT threading model (TThread) and
ROOT seamlessly pluggable with arbitrary threading models (e.g.

TBB, HPX, STL)

* New ThreadPool class offering same

interface of TProcPool

* Solve problems for merging efficiently the output objects produced
by the parallel tasks: (histograms, trees, etc....)

* Entities to facilitate resource protection and handling of object

merging (T ThreadedObject)

* Introduce thread-safety where need

ed (e.g.1/0O)

* Implicit multithreading for parallel

| 'TTree reading palette ot

examples illustrating new features, application for statistics,
likelihood calculations, minimisations, generation of toy experiments.

ROOT

10

Mulu-Threading: 1"lree

* Every TTree is different, so it is every read operation:

+ E.g. trees with many branches, reading systematically all of them
(exp. frameworks), or trees with many entries and reading only a
subset of branches (analysis)

* No solution will fit all cases

A B C D E
01-0.226873 | -1.572761 |-0.146099 |-0.841741 | 25223
j 11-0.393772 |0.986366 |-1.607320 |-0.480856 | 112233
j 0.347761 |0.777437 |0.288697 |0.753554 |25223

entry ranges

-0.627266 [0.152359 |-1.990341 (1.121647 |14333

0.788173 |1.034401 [1.049267 |0.219964 |14333

G| S |QO N

v 0.219663 |-0.800595 (-0.277086 |0.611812 [112233

T ————=———~
parallel for P—

J ROOT ¢ u

Data Analysis Framework

L.oop Over Branches

GetEnW TTree \GetEntry(i)
\

Task L™
Branch 1 Branch N
Sub Sub
branch 1 o branch k

Task

* Implemented parallel T'Tree reading using

a “task programming model” (e.g. TBB)

* speeding up the TTree:GetEntry(i)

* Concurrent de-serialization,

decompression of each branch

+ Tested with realistic ATLAS/CMS data

Data Analysis Framework

12

Multi-Node: SWAN

* A platform to perform interactive data analysis in the cloud
(ROOT-as-a-Service)

* Analyse data without the need to install any software

* Front-end for on-demand / elastic cloud resources (e.g. Spark
cluster, PROOF cluster, etc.)

v :
= jupyter Web Portal = Jupyterhub n
¥

::::;::': Container Scheduler openstack:
cfc /) i
clcIE

|) docker | G B G

J ROOT

Data Analysis Framework

Code Optimization

* Interpreter and type system optimization (CPU and memory)
* Introducing CLANG modules to avoid header compilation

* 1/O Performance
* Code implementation optimization

+ Optimization via change in file format (endianness, memory
layout, binary POD, etc.)

* New C++ Interfaces: an opportunity for improving performance
* Modernize implementations with STL

+ Opportunity to replace “virtual functions” with ‘concrete’ template
instantiations and specializations

* Prototype of ROOT 7 histograms with much better performance

J ROO

Data Analysis Framework

14

Exploiting JI'I

* Using the new JIT capability of LLVM /CLANG is a great opportunity
for performance optimizations

* Specific code can generated and executed at compiled (optimized)
code speed

* Example: New TFormula

* Pre-parsing of expressions (as before) but now using a real
compiler

* Other examples: I/ O proxies, TTree readers, etc.

auto f = new TFormula(“F”,"” [@]+[1]xx");

auto f = new TFormula("F","[] (double xx, double xp)
{return pl[@]+p[1]lxx[0];}",1,2);

/

‘ 2 O O ‘ 15
Data Analysis Framework

Functional Chains

* Prototyping some ideas of “declarative/ functional” chains of basic
concepts such as map, filter, reduce, accumulate, etc.

+ Inspired from data analytic tools such as Spark
* The user specifies the What and system chooses How
* Actions are only triggered at the end of the chain

* Great opportunity for optimizations (partitioning, caching, re-
ordering, etc.)

hist = ttree.filter(lambda event: event.Emiss > 40)
. flatMap(lambda event: event.tracks)
.map(lambda track: sqrt(pxkxx2 + py*xx2))

.histo(100, 0, 20) —

The chain is only
executed when is

completed
ROOT | | 1
Data Analysis Framework

Conclusions

* ROOT will evolved and undertake the necessary changes to improve
performance in any area that will be possible

* Following several development lines

+ Multi-dimensional, Multi-domains (math, fitting, geometry, I/O,
analysis, type system, etc.)

* Not a single solution will fit all cases
* Enabling implicit multi-threading
* Transparent to the user

* Prototyping new ideas with the goal to improve performance on
making use of clusters, functional chains, ROOT-as-a-Service, etc.

Data Analysis Framework

¥4

