
Quest for Performance in ROOT
HSF Workshop, LAL, Orsay 2-4 May 2016
Pere Mato/CERN on behalf of the ROOT Team

Outline
✤ The 8 Dimensions of Performance
✤ Main Challenges
✤ Performance Monitoring
✤ Exploiting Vectorization
✤ Exploiting Multi-processing
✤ Exploiting Multi-Threading
✤ Exploiting Multi-Node
✤ Code optimizations: modules, modern C++, JIT, etc.
✤ Conclusions

2

3

The 8 Dimensions of Performance
✤ The “dimensions of performance” also for ROOT

✤ Vectors
✤ Instruction Pipelining
✤ Instruction Level Parallelism (ILP)
✤ Hardware threading
✤ Clock frequency
✤ Multi-core
✤ Multi-socket
✤ Multi-node

Possibly running different
jobs (PROOF-like) as we do
now is the best solution

} Gain in memory footprint
and time-to-solution
but not in throughput

Very little gain to be
expected and no action to
be taken

Micro-parallelism: gain in
throughput and
in time-to-solution

© Sverre Jarp

ROOT Main Challenges
✤ ROOT is 20 years old, and some parts require re-engineering and

modernization
✤ Need to exploit modern hardware (many-core, GPU, etc.) to boost

performance
✤ Modernize implementations (C++11/14 constructs, use existing libraries,

etc.)
✤ Modernize C++ API to improve robustness eventually giving up on

backward/forward compatibility
✤ Require the collaboration of the community to ensure evolution and

sustainability
✤ Facilitate contributions to ROOT without engaging our responsibility in

the maintenance and user support
✤ Layered software modules or plugins that can bring new functionality to

the end-users
4

Improving Performance of ROOT
✤ ROOT will evolved and undertake the necessary changes to improve

performance in any area that will be possible
✤ The strategy is to be transparent to the user whenever possible

✤ Deliver more computation with the same or even simpler user
interface

✤ Hide complexity as much as possible
✤ Ambitious program for both making parallelism "endemic" within

ROOT itself and for providing components to help users expressing
parallelism

✤ The roadmap foresees the utilisation of different parallelisation
strategies for different problems, qualified by their scale, amount of
legacy code, affordable overhead

5

Measuring Performance
✤ Improvement is not possible without measurement
✤ ROOT could benefit from common profiling strategies and tools

shared with the experiments.
✤ The experience with IgProf has been shown to be a perfect example

of the sharing of such strategies and tools achieving concrete and
numerous results during the integration of ROOT6 with CMS and
ATLAS.

✤ A continuous profiling effort of experiments' data processing “candles"
is immediately beneficial for all building blocks of the experiments'
software stacks:
✤ Time and memory allocated per function
✤ Possibility to inspect memory allocation patterns
✤ Impact of serial code

6

Data Parallelism - Vectorization
✤ Exploit the SIMD instructions available in modern microprocessors
✤ Targeting mainly the Math Libraries in ROOT

✤ Function evaluation with vector interface (Vc)
✤ Likelihood calculations, fitting, etc.
✤ Histogramming

✤ Use types in the VecCore library, which embeds low-level support for
vectorization, in the ROOT Liner Algebra classes

✤ Re-implement the geometry package TGeom in terms of the VecGeom
library developed in the context of GeantV

7

Multi-Processing
✤ Seamless parallelisation (no contention issues) of legacy code

✤ Unique case in C++ landscape thanks to serialisation capabilities
(even without dictionaries thanks to CLING)

✤ PROOF is playing an important role in speedup analysis. Several
flavors:
✤ PROOF-Lite (optimized for single many-core machines)
✤ Dedicated PROOF Analysis Facilities (multi-user)
✤ PROOF on Demand (single-user)

✤ New TProcPool utility, analogies with modern data science, map/
reduce, integration with TTree and ROOT ecosystem.

8

MultiProc package
✤ Developed a new lightweight framework for multi-process

applications
✤ Inspired by the Python multiprocessing module
✤ Idea to re-implement Proof-Lite using it

✤ Distribute work to a number of fork()’d workers, then collect results
✤ Main advantage: workers have access to complete ‘master’ state

9

TProcPool pool(8)
 
auto result = pool.Map(fun, args);

auto result = pool.MapReduce(fun, args, redfun);

C/C++ function
loaded macro
std::function

lambda

Reduce function

std::container
initializer list
TCollection&
unsigned N

defaults to # of
cores

std::vector or
TObjArray

Multi-Threading
✤ Complete abstraction from the ROOT threading model (TThread) and

ROOT seamlessly pluggable with arbitrary threading models (e.g.
TBB, HPX, STL)

✤ New ThreadPool class offering same interface of TProcPool
✤ Solve problems for merging efficiently the output objects produced

by the parallel tasks: (histograms, trees, etc….)
✤ Entities to facilitate resource protection and handling of object

merging (TThreadedObject)
✤ Introduce thread-safety where needed (e.g. I/O)
✤ Implicit multithreading for parallel TTree reading palette of

examples illustrating new features, application for statistics,
likelihood calculations, minimisations, generation of toy experiments.

10

Multi-Threading: TTree

✤ Every TTree is different, so it is every read operation:
✤ E.g. trees with many branches, reading systematically all of them

(exp. frameworks), or trees with many entries and reading only a
subset of branches (analysis)

✤ No solution will fit all cases

11

entry ranges

branchesparallel_for

Loop Over Branches

✤ Implemented parallel TTree reading using
a “task programming model” (e.g. TBB)
✤ speeding up the TTree:GetEntry(i)

✤ Concurrent de-serialization,
decompression of each branch

✤ Tested with realistic ATLAS/CMS data

12

threads
1 2 3 4 5 6 7 8

sp
ee

du
p

0

0.5

1

1.5

2

2.5

3

3.5

4

Hyperthreading

CMS Tree
ATLAS Tree

Multi-Node: SWAN
✤ A platform to perform interactive data analysis in the cloud  

(ROOT-as-a-Service)
✤ Analyse data without the need to install any software
✤ Front-end for on-demand/elastic cloud resources (e.g. Spark

cluster, PROOF cluster, etc.)

13

Code Optimization
✤ Interpreter and type system optimization (CPU and memory)

✤ Introducing CLANG modules to avoid header compilation
✤ I/O Performance

✤ Code implementation optimization
✤ Optimization via change in file format (endianness, memory

layout, binary POD, etc.)
✤ New C++ Interfaces: an opportunity for improving performance

✤ Modernize implementations with STL
✤ Opportunity to replace ‘virtual functions’ with ‘concrete’ template

instantiations and specializations
✤ Prototype of ROOT 7 histograms with much better performance

14

Exploiting JIT
✤ Using the new JIT capability of LLVM/CLANG is a great opportunity

for performance optimizations
✤ Specific code can generated and executed at compiled (optimized)

code speed
✤ Example: New TFormula

✤ Pre-parsing of expressions (as before) but now using a real
compiler

✤ Other examples: I/O proxies, TTree readers, etc.

15

auto f = new TFormula(“F”,”[0]+[1]*x”);

auto f = new TFormula("F","[](double *x, double *p) 
 {return p[0]+p[1]*x[0];}”,1,2);

Functional Chains
✤ Prototyping some ideas of ‘declarative/functional’ chains of basic

concepts such as map, filter, reduce, accumulate, etc.
✤ Inspired from data analytic tools such as Spark

✤ The user specifies the What and system chooses How
✤ Actions are only triggered at the end of the chain
✤ Great opportunity for optimizations (partitioning, caching, re-

ordering, etc.)

16

hist = ttree.filter(lambda event: event.Emiss > 40)
 .flatMap(lambda event: event.tracks)
 .map(lambda track: sqrt(px**2 + py**2))
 .histo(100, 0, 20)

The chain is only
executed when is

completed

Conclusions
✤ ROOT will evolved and undertake the necessary changes to improve

performance in any area that will be possible
✤ Following several development lines

✤ Multi-dimensional, Multi-domains (math, fitting, geometry, I/O,
analysis, type system, etc.)

✤ Not a single solution will fit all cases
✤ Enabling implicit multi-threading

✤ Transparent to the user
✤ Prototyping new ideas with the goal to improve performance on

making use of clusters, functional chains, ROOT-as-a-Service, etc.

17

