
Performance analysis case study:
Lessons learned
Chris Jones, Jim Kowalkowski, Marc Paterno

HSF Workshop
5 May 2016

Problem

• Memory in the MC
workflow jumped
significantly.

• First appeared when
a new shower
generator was used
– Far more particles

in showers

5/4/16M. Paterno: Performance analysis case study2

This	 is	
the	
crisis

What we did (1)

1. Identify the actual problem
– Starting from anecdotal reports
– Blame originally assigned to the wrong target

2. Assemble the team: need the right expertise
– C++ best practices
– Codebase being analyzed
– Performance measurement strategies
– Use of measurement tools, workflow, managing data
– Use this as a mentoring opportunity
– Also needed quick consultations with experiment experts

3. Create validation tests
– Experiments don’t always have enough
– They caught mistakes!

5/4/16M. Paterno: Performance analysis case study3

What we did (2)

4. Make profiling measurements
– Fast tools are good (internal tools of art framework, igprof)
– For slow tools (valgrind/massif), carefully pick events to analyze

5. Analyze results; identify a few “low-hanging fruits”
6. Make code changes, validate changes using the tests
7. Repeat 4—6 until done
– How do you know when you’re done?
– We went until there were no more low-hanging fruit

8. Provide modified code to collaboration
– Easy because of git
– Easier still using pull requests

9. Put quick memory measurement tool in place as CI test

5/4/16M. Paterno: Performance analysis case study4

Some code patterns we fixed

• We looked at the design and use of data structures
– Some data structures were redesigned to be merged and

compacted, e.g.:
• vector<vector<float>> à vector<float>; possible

because the original inner vector is always the same length,
• replace “parallel maps” with a single map with a structured
value_type.

– Some fixes in basic handling of data structures, e.g.:
• return a const& map<…> rather than map<…>.

• We looked at workflow organization issues.
– Don’t cache results in framework module state.
– Summarize data as early as possible, and keep only the

summary, e.g.
• simulated particles are dropped ASAP when filtering by volume

5/4/16M. Paterno: Performance analysis case study5

How we tested

• We were only making changes to organization and handling
of data structures.

• We were making no changes to “physics algorithms”: no
changing thresholds, no changing double to float, etc.

• We expected exactly the same output from modified code.
• We needed to do enough testing to convince the

experimenters to take the code; they would do their own final
validation.

• We wrote framework modules to produce ASCII dumps of
reconstruction products, and then diffed the resulting files to
verify that no changes were introduced.

5/4/16M. Paterno: Performance analysis case study6

Summary - performance

• Sample events originally
had ~8 GB memory
footprint

• After changes, footprint
reduced to ~3.6 GB

• Larger scale run needed to
reproduce this distribution

• Expected to shift and
compress, unclear where
that new peak will be.

• Our high-priority effort took
about two weeks to
complete.

5/4/16M. Paterno: Performance analysis case study7

Lessons learned: technical things
• Don’t clear memory at the front of calls into member functions that

cache data.
– Clear out the cache as soon as the data is not needed
– Clearing at the front causes the previous event’s data to be

retained
– Recommended practice: don’t cache data in algorithmic objects

• Complex data structures used for small look-ups cost memory
– Maps of numbers to vectors
– Vectors of maps
– Vectors of vectors
– Maps when simple linear structures will do

• All of these hurt when the number of live instances goes way up,
and this is what happened with the additional particle flux (latent
data structure problems)

5/4/16M. Paterno: Performance analysis case study8

Lessions learned: process (1)

• Direct modification of the code was critical for our success.
– Previous reviews, resulting in a document with

recommendations for change, were not as successful.
– We were able to do this because the experiment needed

the fixes, and they needed them quickly.
• Good testing is needed for this kind of work. What constitutes

“good” depends on the task, and on who it is done for. Final
testing is always in the hands of the experiment.

• CI testing is useful, but not enough.
• We need to catch the design issues earlier to avoid a crisis:

better communication, earlier in development.
– Can we make software development more collaborative,

like the development of an analysis?

5/4/16M. Paterno: Performance analysis case study9

Lessons learned: process (2)

• Knowledge of fundamental features of data structures is
important.
– At least a cartoon-level understand of overhead from vector,

that maps are node-based, etc.
• We need to spread this knowledge.
– To be added to any future art or LArSoft course.
– Give talks at collaboration meetings.
– This way of making performance improvements (concrete

changes done in a short time) motivates people.

5/4/16M. Paterno: Performance analysis case study10

Thanks

5/4/16M. Paterno: Performance analysis case study11

