ALFA From LS1 to 2016

P.Fassnacht on behalf of ATLAS/ALFA

- Detector readiness
- Status of physics analyses (short)
- Plans for 2016

The ALFA detector

- 2 x 2 stations~ 240 m from ATLAS IP
- 8 fiber detectors with 2 x 10 layers of 0.5 mm quadratic fibers
- Movable in vertical direction
- Resolution ~ 35 μm

Long list of LS1 upgrades ...

- All 4 station moved from tunnel to surface, complete disassembling
- Replacement of detector ALFA2 \rightarrow ALFA10
- Alternate pre-vacuum pumping with remote controlled spare pump
- Reduced dead time of trigger electronics to handle up to ~ 700 bunches
- Upgrade of movement system: PXI, FESA etc.
- Upgrade of DCS and TDAQ along with ATLAS stream
- <u>Vital</u>: heat protection to avoid damage of detectors
- New laser survey in tunnel
- Special trigger board to stay within ATLAS latency budget
- Move both far stations to new positions to enlarge distance 4m → 8m,
 → improve t-resolution by factor 2
- New code for reconstruction software

3

From tunnel to surface and back

15/3/2016

Heating in Run1

Temperatures of ALFA detectors during a LHC fill

- Max increase ~ 20 degrees observed
- Danger: destroy structure of fiber detector

Forward Physics Workshop

4 Measures against heating

RP Filler, ferrites, air cooling, heat distribution

Heating in Run2

Temperatures of ALFA detectors during a LHC fill 2015

→ Small increase by ~ 3 degrees, save for Run2

Data taking in Run2: beta* 90m

Monday 8:00 15/3/2016 Sunday 12:00

Elastic scattering

- Refill LHC with 3 bunches ~ 8E10 plus up to 10 pilot bunches ~ 1E10
- Move the Roman Pots again to 5.5 $\sigma_{nominal}$
- Follow data recording by farm processing for various groups of trigger items
- Now w/o IBL in readout to allow higher trigger and storage rates

- After about 4.5 hours beam was dumped by operator !!!
- Collected: 40 million physics, 11 million elastic, 450 million calibration triggers
- Data w/o crossing angle for standard elastics analysis
- Qualification by loss map tests for Roman Pots at 10 σ successful, originally 12 σ 15/3/2016 Forward Physics Workshop

Diffractive scattering

- Due to ALFA dead time min bunch spacing 100 nsec, allows max 700 bunches
- Unusual filling scheme, never before tested ...
- Strategy for intensity ramp: $50 \rightarrow 250 \rightarrow 700$ bunches
- Move all Roman Pots to 10 $\sigma_{nominal}$ (5-7 mm)
- Example: Online plots for single diffractive events combining ALFA & MBTS

Integrating over all 7 fills:

- LHC delivered: 735 nb-1
- ATLAS+ALFA in position recorded: 652 nb-1
- ATLAS+ALFA optimal: ~600 nb-1 (~82 % efficiency)

List of YETS 2015 upgrades ...

- Vacuum pumps & fans
- Replacement of noisy LVDT
- Modification of Radmons for higher doses
- Upgrade of movement system. Interlock validation started
- Changes in DCS and TDAQ along with ATLAS
- Measures against the UFO issue
- Long-pending installation of new magnet cables

UFO issue and measures (1)

Beam dump in an ALICE/LHCb vdM run by a BLM signal close to station A7L1

Measure#1: multiple movement repetitions in TS2

No clear effect UFO rate scales with beam intensity All signals below dump threshold

UFO issue and measures (2)

Measure#2: increase dump threshold from machine side, more coherent with TOTEM Increase by factor ~25 should rule out UFO amplitudes above the threshold over Run2

Beta* 90m, Oct 10-19, 2015 BLM signals versus RP mvt

→ No indication of correlation seen.

Magnet cables for Q4

Cables installed - to satisfy optics requirements very asymmetric powering of Q4 needed for the 2 beams. Not possible with the past powering schema – Like for TOTEM new cables installed during YETS

Cables: 24h Short Circuit Test

Optics:

- Starting point : 1000 m optics of 2012.
- No more Beam1 / Beam2 ratio constraint on Q4.
- Phase advances: 90deg in vertical (ok) and away 180deg in horizontal (not yet fully there...).
- Preliminary file available.

Steps to highest beta*

Powering tests of Q4.R5 on the 2015.02.14 results (TOTEM)

De-coupling of beam1 and beam2 allows to design optics with less constraints

Status of physics analyses

Elastic scattering:

- Total/elastic cross section at 7TeV (beta* 90m) published
- Analysis 8TeV / 90m in final stage. Internal reviewing started.
- Analysis 8TeV / 1km first iteration done, checking consistency with 90m results
- Data 13 TeV/ 90m first inspection done, on hold until 8 TeV results published

Diffractive processes:

- 7 + 8 TeV exclusive pions: close to being finalized
- 13 TeV inclusive and exclusive analysis started
- ALFA+LHCf combined data, mostly pp + π^0

Standard elastics program

Measurement of luminosity and total cross section by elastic scattering at very low t

In dependence on t-range two options:

1. Only nuclear scattering and luminosity from ATLAS $\rightarrow \sigma_{tot}$

$$\frac{d\sigma}{dt} = \frac{1+\rho^2}{16\pi(\hbar c)^2}\sigma_{tot}^2\exp(-Bt)$$

2. Coulomb + nuclear scattering: \rightarrow Luminosity and σ_{tot}

$$\frac{\mathrm{d}N}{\mathrm{d}t} = L\pi \left| f_C + f_N \right|^2 \approx L\pi \left| -\frac{2\alpha}{|t|} + \frac{\sigma_{tot}}{4\pi} (i+\rho) e^{-b|t|/2} \right|^2$$

Key parameter: small t_{min} requires small emittance ε_N , close distance N_σ and large β^*

$$t_{\min} = m_p \quad p \, \frac{\varepsilon_{\rm N} \, N_{\sigma}^2}{\beta^*}$$

15/3/2016

Forw

On the way to highest beta*

Hit maps & resolution from fast simulation

t_min, how much into CNI?

"Only" freedom: maximise $\beta_v^*\beta^*$!

Acceptance versus detector positions

- For data in CNI region with acceptance > 10% detectors at 1mm to beam
- Taking into account ~ 0.4mm dead space due to window+gap RPs at 0.6mm

Acceptance (10%) and t-resolution limits range for physics analysis to at best t > 2.10^{-4} GeV²

Schedule for 2016

- Two slots to implement and measure optics: end of May, July
- A period of 3-4 days for data taking late September , together with TOTEM. Needs final confirmation

	Apr		SCIU	gniaai	May			June					
Wk	14	15	16	17	18	19	20	21	22	23	24	25	26
Мо	4	11	18	25	2	9	Whit 16	23	30	6	13	20	27
Tu							VdM		beta* 2.5 km dev.				
We							Valvi			TS1			
Th	Re	commission	ing	¥	Ascension								
Fr		with beam			May Day comp				MD 1				
Sa					In	tensity ramp-u	qu						
Su				1st May	Scru	ibbing as requi	ired						

	July				Aug				Sep				
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	4	11	18	25	1	8	15	22	29	5	12	E m ¹⁹	26
Tu												2.5 k taking	
We				MD 2					TS2	MD 3		eta* = data	
Th							MD			Jeune G		þe	
Fr													
Sa				beta* 2.5 km dev.									
Su													

Thank you for your attention

Ready for β*=2.5km

Sune Jakobsen