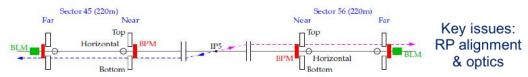
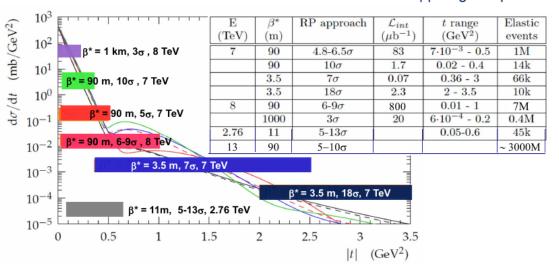
TOTEM physics results

Jan Kašpar on behalf of the TOTEM collaboration

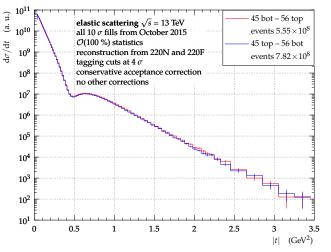


LHC Working Group on Forward Physics and Diffraction 15 March, 2016

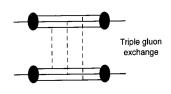


Elastic pp scattering: selection & data sets

Selected based on topology, low |\xi|, collinearity & vertex

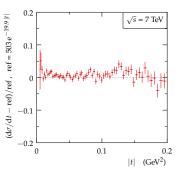


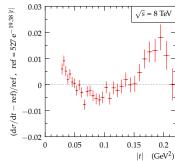
Data sets at different conditions to measure over as wide |t|-range as possible

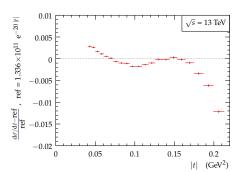

Elastic scattering at $\sqrt{s} = 13 \text{ TeV}$

very preliminary, but already very strong results

- high-|t| data: no structures!
 - rules out many models
 - o rules out physics mechanism: "optical" models
 - physics interpretation: transition between diffraction and pQCD

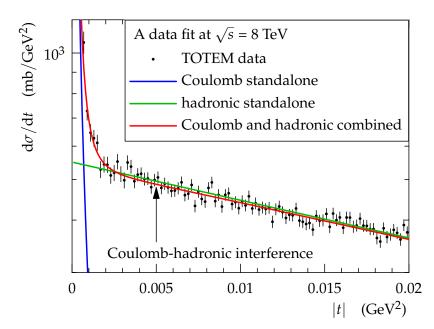



Elastic scattering: non-exponentiality at low |t|


magnify deviations from pure exponential ⇒ plot:

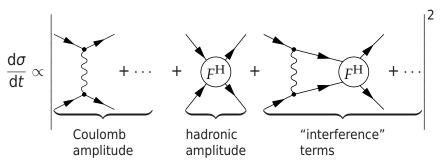
$$\frac{d\sigma/dt - ref}{ref}$$

• $\beta^* = 90$ m measurements at different energies (stat. unc. only):


- non-exponentiality observed at 8 and 13 TeV!
 - o non-exponentiality of the observed cross-section:

 $d\sigma/dt = nuclear + Coulomb + interference$

details studied at 8 TeV: CERN-PH-EP-2015-325


Coulomb-nuclear interference at 8 TeV

- data with $\beta^* = 1000$ m optics
 - \circ RPs at 3 $\sigma_{\rm beam}$
 - $\circ |t|^{\min} \approx 6 \cdot 10^{-4} \text{ GeV}^2$

Coulomb-nuclear interference: theoretical framework

observed cross-section

- interference formula: summation for practical applications
 - simplified West-Yennie (SWY): QFT framework, traditional but heavy simplifications (constant hadronic phase, constant slope)
 - o Kundrat-Lokajicek (KL): eikonal framework, no explicit simplifications
- interference ⇒ phase of hadronic amplitude exposed in cross-section
 - phase t-dependence needs to be considered in analysis
 - \circ constraints from data \Rightarrow determination of ρ parameter

$$\rho = \left. \frac{\Re \mathcal{A}^{\mathsf{H}}}{\Im \mathcal{A}^{\mathsf{H}}} \right|_{t=0}$$

CERN-PH-EP-2015-325: physics oriented analysis

central question: observed non-exponentiality – due to hadronic, Coulomb or both?

- fits with 2 different assumptions on hadronic component
 - o purely-exponential non-exponentiality due to Coulomb (+interference)
 - o flexible enough to describe non-exponentiality even without Coulomb

- role of hadronic phase *t*-dependence?
 - \circ largest weight in interference formula: rate of change at low |t|
 - same quantity controls behaviour in impact-parameter space
 - considered two families
 - *central*: preference for low impact parameters
 - peripheral: preference for high impact parameters

CERN-PH-EP-2015-325: result summary

	central	peripheral
hadronic: purely exponential	excluded	disfavoured
hadronic: more flexible	compatible	compatible


- SWY formula excluded
- purely-exponential hadronic modulus + peripheral phase = disfavoured
 - \circ ρ value outside a consistent pattern of other fits and theoretical predictions
 - number of theoretical reasons for non-exponential hadronic amplitude
- central description: not a necessity
- ρ first LHC determination from Coulomb-hadronic interference:

$$\rho = 0.12 \pm 0.03$$

- σ_{tot} results consistent with previous publications, but for the first time:
 - Coulomb component explicitly separated
 - \circ determined in the same analysis as ρ

Outlook: $\beta^* = 2500$ m planned in 2016

- Coulomb-nuclear interference measurement at 13 TeV
 - ∘ need larger β^* for low |t| at higher energy $\Rightarrow \beta^* = 2500$ m
 - \circ experimental key improvement: higher statistics at low |t|
 - leading source of uncertainty on ho
 - hardware improvement in Run II: both diagonals can be used \Rightarrow factor 2
 - longer running time: 3 days requested

- theoretical improvements welcome
 - interference formulae
 - constraints on hadronic component (modulus and phase)

Outlook: Odderon considerations

- Odderon = (hypothetical) cross-odd partner of Pomeron
- Odderon searches
 - o comparison pp vs. anti-pp (dip): not applicable at LHC
 - spin analyses: not applicable at LHC
 - \circ structures in d σ /dt: where Pomeron contribution small
 - high-|t|: disfavoured by 13 TeV measurements
 - low-|t|: shifts of ρ value ⇒ within reach of TOTEM