Confirming RHIC saturation signals at the LHC

Cyrille Marquet

Centre de Physique Théorique Ecole Polytechnique & CNRS

Map of parton evolution in QCD

x: parton longitudinal momentum fraction

 k_{τ} : parton transverse momentum

the distribution of partons as a function of x and k_{τ} :

QCD linear evolutions: $k_T \gg Q_s$ DGLAP evolution to larger k_{τ} (and a more dilute hadron) BFKL evolution to smaller x (and denser hadron)

dilute/dense separation characterized by the saturation scale $Q_s(x)$

QCD non-linear evolution: $k_T \sim Q_s$ meaning $x \ll 1$ this regime is non-linear yet weakly coupled: $\alpha_s(Q_s^2) \ll 1$

collinear factorization does not apply when x is too small and the hadron has become a dense system of partons

$$S_{DIS}(x_{Bj}, Q^2) = \overset{a}{\underset{partons \ a \ x_{Bj}}{\overset{1}{\xrightarrow{}}}} \overset{b}{\underset{parton \ density}{\overset{1}{\xrightarrow{}}}} \overset{c}{\underset{partonic \ cross-section}{\overset{1}{\xrightarrow{}}}} \overset{c}{\underset{parton \ density}{\overset{1}{\xrightarrow{}}}} \overset{c}{\underset{partonic \ cross-section}{\overset{1}{\xrightarrow{}}}} \overset{c}{\underset{parton \ density}{\overset{1}{\xrightarrow{}}}} \overset{c}{\underset{partonic \ cross-section}{\overset{1}{\xrightarrow{}}}} \overset{c}{\underset{parton \ density}{\overset{1}{\xrightarrow{}}}} \overset{c}{\underset{parton \ density}{\overset{1}{\xrightarrow{}}}} \overset{c}{\underset{partonic \ cross-section}{\overset{1}{\xrightarrow{}}}} \overset{c}{\underset{parton \ density}{\overset{1}{\xrightarrow{}}}} \overset{c}{\underset{parton \ density}{\overset{1}{\xrightarrow{}}} \overset{c}{\underset{parton \ density}{\overset{1}{\xrightarrow{}}}} \overset{c}{\underset{parton \ density}{\overset{1}{\xrightarrow{}}}} \overset{c}{\underset{parton \ density}{\overset{1}{\xrightarrow{}}}} \overset{c}{\underset{parton \ density}{\overset{1}{\xrightarrow{}}}} \overset{c}{\underset{parton \ density}{\overset{d}}} \overset{c}{\underset{parton \ density}{\overset{d}}$$

Saturation signal #1:

forward rapidity suppression of the nuclear modification factor in p+A vs p+p

Single inclusive hadron production

forward rapidities probe small values of x

Nuclear modification factor

 $dN^{dA \to hX}$

 d^2kdv

 $R_{dA} = 1$ in the absence of nuclear effects, i.e. if the gluons in the nucleus interact incoherently as in A protons $R_{dA} = \frac{1}{N}$

the suppressed production ($R_{dA} < 1$) was predicted in the Color Glass Condensate picture, along with the rapidity dependence

Kopeliovich et al (2005), Frankfurt et al (2007)

p+Pb @ the LHC

• mid-rapidity data

good description but not much non-linear effects

predictions for forward rapidities

strong non-linear effects

Best way to confirm R_{pA} suppression at the LHC

- isolated photons at forward rapidities
 - no isospin effects in p+Pb vs p+p (contrary to d+Au vs p+p at RHIC)
- smallest possible x reach: no mass, no fragmentation
- no cold matter final-state effects (E-loss, ...)
- large EPS09 / CGC difference in forward rapidity predictions

Arleo, Eskola, Paukkunen and Salgado (2011)

Jalilian-Marian and Rezaeian (2012)

Confirmation of forward rapidity R_{pA} suppression:

we should push for the FOCAL upgrade of the ALICE detector

(more details in the Yellow Report)

Saturation signal #2:

forward rapidity suppression of di-hadron azimuthal correlations in p+A vs p+p

Di-hadron final-state kinematics

final state :
$$k_1, y_1 = k_2, y_2$$

$$x_{p} = \frac{k_{1} e^{y_{1}} + k_{2} e^{y_{2}}}{\sqrt{s}} \qquad x_{A} = \frac{k_{1} e^{-y_{1}} + k_{2} e^{-y_{2}}}{\sqrt{s}}$$

scanning the wave functions:

 $x_p \sim x_A < 1$ central rapidities probe moderate x x_p increases $| x_A \sim$ unchanged $x_p \sim 1, x_A < 1$ forward/central doesn't probe much smaller x $x_p \sim unchanged | x_A decreases$ $x_p \sim 1, x_A << 1$

forward rapidities probe small x

Di-hadron angular correlations

comparisons between d+Au \rightarrow h₁ h₂ X (or p+Au \rightarrow h₁ h₂ X) and p+p \rightarrow h₁ h₂ X

however, when $y_1 \sim y_2 \sim 0$ (and therefore $x_A \sim 0.03$), the p+p and d+Au curves are almost identical

R_{pA} of forward-forward di-jets

• at the LHC this can be done with di-jets!

strong nuclear modification predicted due to strong non-linear effects

Confirmation of forward-forward azimuthal decorrelation:

we should push for p+Pb data taking with ZDC+T2+CASTOR

Conclusions

- Fundamental consequence of QCD dynamics:
 - at asymptotically small x/large A, QCD evolution becomes non-linear
- Non-linear evolution of gluon density in Au at RHIC:
 - suppression of single hadron production in d+Au vs p+p
 - suppression of back-to-back correlations of di-hadrons in d+Au vs p+p
- Awaiting more LHC p+Pb forward rapidity data (so far only quarkonia which are not the best probe of saturation physics)
- The most sensitive measurements could be done with FOCAL upgrade of ALICE (isolated photons) and p+Pb data taking with ZDC-T2-CASTOR (forward-forward dijets)