

Forward physics options at the FCC

by **Helmut Burkhardt** (CERN)

1

Future Circular Collider Study, FCC <http://fcc.web.cern.ch> [Indico / Projects / FCC](https://indico.cern.ch/category/5153/)

Goal

The Future Circular Collider study has an emphasis on proton-proton and electron-positron (lepton) high-energy frontier machines. It is exploring the potential of hadron and lepton circular colliders, performing an in-depth analysis of infrastructure and operation concepts and considering the technology research and development programs that would be required to build a future circular collider. A conceptual design report will be delivered before the end of 2018, in time for the next update of the European Strategy for Particle Physics.

Studies on the accelerator and [machine-detector interface](https://indico.cern.ch/category/5901/) for 2 high luminosity interaction regions are in progress, energy deposition studies well advanced

Here some early considerations on forward physics options, as seen from the machine side -- recalling and slightly extending what I said last meeting on 27/10/16

Acknowledgment :

discussion with [FCC-hh design team](https://indico.cern.ch/category/5623/), Daniel Schulte, Xavier Buffat et al.

Time scale

CDR by end 2018 for next strategy update

Future Circular Collider Study Michael Benedikt [Academic Training. 2 February 2016](http://indico.cern.ch/event/472105/)

Hadron Collider FCC-hh

[CERN-ACC-2015-132](http://cds.cern.ch/record/2059230) of 21/10/2015

Baseline Parameters **100 TeV** c.m.s $L = 100$ km Injection energy 3.3 TeV

Baseline, 25 ns option : $L = 5e^{\frac{3}{4}}$ cm⁻²s⁻¹ leveled ∫ Ldt = 250 fb-1 per year and IP

 $#$ bun = 10600, 1.e11 / protons per bunch $\varepsilon_N = 2.2 \text{ }\mu\text{m}$

Non negligible SR: 2.4 MW per beam E_{crit} 4.3 keV (\approx SuperKEKB)

High luminosity IPs A, G : $\beta^* = 1.1$ m, x-ing angle \pm 45.5 µrad

IPs **H, F** not yet defined

Schematic collider layout. The straight insertions are shown in red and the arcs in black; the anticipated space for the dispersion suppressors is indicated in green.

FCC, current low β IP layout

Extra IPs

LHC IP2, IP8 - magnet/optics very similar to high-lumi IP1 / IP5 More constraint by injection.

Extra IPs not yet studied in any detail for FCC Potentially very interesting -- support from physics community (you) essential

Could potentially be used for an optimized lower luminosity, higher β* forward/diffractive IR was also considered for the SSC ([SSC-88](http://lss.fnal.gov/archive/other/ssc/ssc-88.pdf) 9/1986, D.E. Groom et al.)

FCC : extra IP's H, F

- **• Same 1.4 km length as high luminosity IPs A,G**
- **• not constraint by injection**

More dedicated lower luminosity IR :

- Integration of detectors in IR layout : early planning may allow for integration of forward detectors in *machine sections* and better optimization for higher dispersion in the dogleg : Forward physics instrumentation, Rainer Schicker, [FCC hadron detector meeting 27/07/2015](https://indico.cern.ch/event/434709/) or in the dispersion suppressor (FP420 equivalent for FCC)
- Lower luminosity \rightarrow less shielding and radiation does not necessarily exclude lower β^* . Possible synergies with heavy ion mode

- β* << L* **low beta** small beams at IP. 90º phase advance L/R and strong focusing triplet high angular divergence
- β* >> L* **high beta** large parallel beams, low angular divergence ~ no phase advance and focusing

FCC-numbers, fcc_ring_v4_baseline, roughly $2x$ the LHC

- $L^* = 46$ m (centre of 20 m long "Q1", MQXC.1R)
- $\beta^* = 1$ m design value of low β^*

Scaling, from LHC to FCC $\overline{ }$ $\mathop{\mathrm{mg}}\nolimits, \;\mathop{\mathrm{rrc}}\nolimits$ $\bf{T} \bf{H} \bf{Q}$ $\bf{H} \bf{Q} \bf{Q}$ *HC* to FC ding. from LHC to FC: \sum_{CALC} Scaling, from LHC to FCC $\left(\begin{array}{c} \text{FLE} \\ \text{hreehe} \end{array}\right)$

FCC: E, γ increases by factor 100 / 14 = 7 in
$$
\sqrt{\gamma}
$$
 by 2.7

\nBean size at IP

\n
$$
\sigma^* = \sqrt{\beta^* \epsilon} = \sqrt{\beta^* \epsilon_N / \gamma}
$$
\nAngular beam divergence

\n
$$
\sigma' = \sqrt{\epsilon / \beta^*} = \sqrt{\epsilon_N / (\gamma \beta^*)}
$$
\nLuminosity, round beams

\n
$$
\mathcal{L} = \frac{N^2 f}{4\pi \sigma^2} = \frac{N^2 f \gamma}{4\pi \beta^* \epsilon_N}
$$
\nMinimum *t* with RP at *n*_σ

\n
$$
-t_{\min} = \frac{2 p n_{\sigma}^2 \epsilon_N m_p}{\beta^*}
$$
\nγ

definition 96 **p**_n **at 7 TeV, but almost ok for half of the beam energy. Maybe still possible to gain at 7 TeV, but almost of the beam energy. Maybe still possible to gain at 7 TeV, but almost a still possible to gain at** NOTHERE CHINAL BY $e = \varepsilon_N = 2.2$ university of the energy involving corrections and η . from $\beta \sim 2$ km at LHC (yet to be reached) to ~ 14 km at FCC ? $\frac{1}{\pi}$ injectors, similar for all proton machines. Beams shrink when accelerated. Difficulty to reach a certain minimum *t* (i.e. Coulomb IR) increases ~ linear at constant ε_N with γ Normalized emittance $\gamma \epsilon = \epsilon_N = 2.2 \mu m$ constant in (lower energy) proton machines, determined by

> In ECC domning from SD _LDE significant opens up possibility to get significantly lower deuitated In FCC, **damping** from SR+RF significant, opens up possibility to get significantly lower emittance --- **potentially very useful for dedicated runs**

Reminder : Low luminosity ≠ No interference

Quantified by tune shift parameter ξ

N

r^c N head-on, round beams depends only on N / ε_N

not on energy and **not on β***

Head on : same beam-beam from low lumi high-β as high lumi IPs

To reduce b.b. would require to run separated by several σ

Principle of separation by crossing angle at higher β*

Low $β^*$ (<**L***)

beam size and separation increase ∝ **Δs,** ⇒ **separation in units of σ about constant around IP all parasitic crossings adding up with similar contribution**

Instead high β* :

beam size ~ constant = σ^* **, separation in** σ **increases as** $\Phi \Delta s$ **where Φ is the crossing angle, dominated by 1st parasitic crossing 100 ns bunch spacing 4× more separated than 25 ns, used for 90m LHC and negligible contribution from next 200, 400 ns ...**

LHC, separation and crossing bumps at 90 m, IR1, IR5

IR1, ATLAS-ALFA IR5, CMS-TOTEM

Vertical crossing The Contract C

Shown for ± 1 mm separation

 ± 50 μrad (half) crossing angle --- limited by corrector strength (+ injector RF) to 100 ns spacing or 4x reduced #bunches

With sufficient corrector strength and aperture : 25 ns spacing in dedicated FCC IR

Parasitic running in standard physics next to high luminosity IP, with tens of kilowatts of collision debris will be difficult. Important to plan this before.

Consider 3 scenarios - of which 1.+2. best at dedicated lower luminosity IP

1. Dedicated very high β* operation for cross section measurements Few bunches, no crossing angle. Few dedicated runs.

Roman pots very close (few sigma).

Minimize beam-beam (no collisions in other IPs, moderated bunch intensities) :

Profit from SR/RF radiation damping : $\varepsilon_N = 2.2 \text{ }\mu\text{m} \times \exp(-t / \tau)$

where $\tau = 1$ h. After \sim 4 hours at **reduced equilibrium emittance**, maybe as low as \sim 0.05 μ m **β* ~ few km could be sufficient, very high β* > 10 km may not be needed**

 at reduced bunch intensities, more bunches compatible with no crossing angle to get sufficient luminosity to be checked and optimized : damping partition, beam-beam, bunch schemes, IBS

On the other hand there should be

no principle problem to go to very high β*

like tenths of km if this is taken into account in the IR design Key ingredients for very high β^* :

- flexible quadrupole powering (bipolar) and large aperture
- sufficient $#$ (≥ 6) of independently powered quads IP to RPs
- well separated IR, DS sections
- getting there de-squeeze from $\beta^* > L^*$ *^{0.0}^{0.0} 300. 600. 900.*

2. Moderately high β* ~ 100 m operation for forward / diffractive physics

 (and minimum bias, proton vs / ion calibration ..) with kind of "ALICE+TOTEM" IR and detectors Design IP such that enough corrector strength and aperture available for sufficient crossing angle $(≥ 10 σ)$ and parallel separation to operate with full number of bunches with 25 ns spacing Aim : **compatible with standard physics** --- no need for limited special runs Roman pots at \sim 10 sigma ? (after some h in physics)

3. Very forward detectors in very high luminosity insertions A/G "FP420" tagging of protons (ξ in the range 0.01 - 0.10 ?) at full luminosity using detectors in the dispersion suppressor needs early planning --- space and integration with magnet / cryo / collimation design

For discussion : contribute to FCC-hh CDR ?

- **• physics motivation**
- **• requirements in terms of target machine parameters**

For each of the running scenarios considered, define the requirements :

- **• phase advance between IP and RPs**
- **• plane (x, y), w/o crossing angle**
- **• local dispersion between IP and RPs ("ξ" acceptance, D / √ β)**
- **• detector acceptance (η ranges)**
- **• closest approach of RPs to beam axis nσ and real space (mm, w/o dead space)**
- if required limits on transfer matrix magnification $v = r_{1,1}$ eff. length $L = r_{1,2}$
- **• ∫ L dt**
- **• Pile-up**

1st step to get something is to ask for it

On a brain-storming level

--- there appears to be very good potential for forward / diffractive physics at FCC

2 extra IRs not yet studied / assigned

Could profit a lot from :

- **• More dedicated interaction region**
- **• More space and flexibility**
- **• Reduced emittance (significant SR/RF damping)**
- **• Potentially compatible with standard operation**
- **• Detectors in higher dispersion sections (dogleg, DS)**