LIGHT BY LIGHT SCATTERING AND THE 750 GEV DIPHOTON EXCESS

Gero von Gersdorff

Pontifícia Universidade Católica do Rio de Janeiro CERN, 15/03/2016

Based on work with Sylvain Fichet & Christophe Royon 1512.05751 and 1601.01712

International Centre for Theoretical Physics
South American Institute for Fundamental Research

INTRODUCTION

THE EXCESS AT 750 GEV - ATLAS

THE EXCESS AT 750 GEV - ATLAS

$ATLAS 3.2 fb^{-1} (13 TeV)$

- Local: 3.9 σ
- Global: 2.3 σ \bullet

THE EXCESS AT 750 GEV - ATLAS

ATLAS 3.2 fb⁻¹ (13 TeV)

- Local: 3.9σ \bullet
- Global: 2.3 σ

Compare with the Higgs (roughly 3x the statistics…)

THE EXCESS AT 750 GEV - CMS \mathbf{I} -2 0 2

 \sim CMS: 20 fb⁻¹ (8 TeV) + 2.6 fb⁻¹ (13 TeV) photon candidates are matched to those selected in the analysis using a k-nearest-neighbourse \sim algorithm, <mark>● Local: 3.0 σ</mark> **Figure 4 shows, in an analysis of the measured contributions of the different background compositions of the di**

THE DIPHOTON PAPER AVALANCHE...

THE DIPHOTON PAPER AVALANCHE...

"not very significant…" "fluctuations come and go …" "looking forward to more data…"

Experimentalists:

THE DIPHOTON PAPER AVALANCHE...

"not very significant…" "fluctuations come and go …" "looking forward to more data…"

Experimentalists:

Theorists:

Largest excess is found at diphoton mass ~ 750 GeV (both ATLAS and CMS)

- Largest excess is found at diphoton mass ~ 750 GeV (both ATLAS and CMS)
- ATLAS reports a best-fit value of 45 GeV for the width (6% of the mass)

- Largest excess is found at diphoton mass ~ 750 GeV (both \bullet ATLAS and CMS)
- ATLAS reports a best-fit value of 45 GeV for the width $(6\%$ of the mass)
- The cross section is roughly $\sigma(pp \to \phi)$ BR($\phi \to \gamma \gamma$) ~ 10 fb

- Largest excess is found at diphoton mass \sim 750 GeV (both ATLAS and CMS)
- ATLAS reports a best-fit value of 45 GeV for the width $(6\%$ of the mass)
- The cross section is roughly $\sigma(pp \to \phi)$ $BR(\phi \to \gamma \gamma) \sim 10$ fb
- No electric charge *Q=0*

• Landau-Yang theorem: spin-1 cannot decay into $\gamma\gamma$

Simplest possibilities: spin-0, spin-2 \bullet

- Landau-Yang theorem: spin-1 cannot decay into $\gamma\gamma$
- Simplest possibilities: spin-0, spin-2 \bullet
- Simplest case: Spin-0, SM singlet: UV complete theories imply the presence of other new particles!

- Landau-Yang theorem: spin-1 cannot decay into $\gamma\gamma$
- Simplest possibilities: spin-0, spin-2 \bullet
- Simplest case: Spin-0, SM singlet: UV complete theories imply the presence of other new particles!

- Landau-Yang theorem: spin-1 cannot decay into $\gamma\gamma$
- Simplest possibilities: spin-0, spin-2
- Simplest case: Spin-0, SM singlet: UV complete theories imply the presence of other new particles!

- Landau-Yang theorem: spin-1 cannot decay into $\gamma\gamma$
- Simplest possibilities: spin-0, spin-2
- Simplest case: Spin-0, SM singlet: UV complete theories imply the presence of other new particles!

- Landau-Yang theorem: spin-1 cannot decay into γγ
- Simplest possibilities: spin-0, spin-2
- Simplest case: Spin-0, SM singlet: UV complete theories imply the presence of other new particles!

PART I: PHOTON FUSION PRODUCTION

THE PRODUCTION MECHANISM

1 f_γ $\phi F_{\mu\nu}F^{\mu\nu}$ + 1 f_g $\overline{\phi}$ $G_{\mu\nu}$ $G^{\mu\nu}$ *γ γ*

THE PRODUCTION MECHANISM

THE PRODUCTION MECHANISM

1 f_γ ϕ $F_{\mu\nu}F^{\mu\nu}$ + 1 f_{q} $q \sum_{\mu} \oint_{-\infty} q^2 y$ $\mathcal{L}_{eff} = \left[\frac{1}{c} \phi F_{\mu\nu} F^{\mu\nu} \right] + \left[\frac{1}{c} \phi \bar{q} q \right]$

Photon Fusion

1 f_γ $\overline{\phi}$ $F_{\mu\nu}$ $F^{\mu\nu}$

Let's assume:

$$
\mathcal{L}_{eff} = \frac{1}{f_{\gamma}} \phi F_{\mu\nu} F^{\mu\nu}
$$

Let's assume:

$$
{\cal L}_{eff}=\boxed{\frac{1}{f_\gamma}\phi\,F_{\mu\nu}F^{\mu\nu}}
$$

- 1. What is the cross section in terms of effective coupling *f^γ -1* ?
	- Model independent!
	- Infer *fγ* from data!

Let's assume:

$$
\mathcal{L}_{eff} = \boxed{\frac{1}{f_{\gamma}} \phi F_{\mu\nu} F^{\mu\nu}}
$$

- 1. What is the cross section in terms of effective coupling *f^γ -1* ?
	- Model independent!
	- Infer *fγ* from data!

- 2. What is the effective coupling in terms of fundamental parameters?
	- Model-dependent!
	- Perturbativity?

Fichet, GG, Royon 1512.05751 see also:

Csaki, et al : 1601.00638 Harland-Lang et al, 1601.07187

Fichet, GG, Royon 1512.05751

see also: Csaki, et al : 1601.00638 Harland-Lang et al, 1601.07187

Computation of cross section gives: \bullet

$$
\sigma_{pp \to \gamma \gamma X} = 5.9 \text{ fb} \left(\frac{5 \text{ TeV}}{f_{\gamma}} \right)^4 \frac{45 \text{ GeV}}{\Gamma_{\phi}} \times \frac{r_{fs}}{0.8} \times \frac{r_{inel}}{20} \qquad \frac{r_{fs} \sim 0.6...1.0}{r_{inel} \sim 15...25}
$$

Fichet, GG, Royon 1512.05751

see also: Csaki, et al : 1601.00638 Harland-Lang et al, 1601.07187

Computation of cross section gives: \bullet

$$
\sigma_{pp\to\gamma\gamma X} = 5.9 \text{ fb} \left(\frac{5 \text{ TeV}}{f_{\gamma}} \right)^4 \frac{45 \text{ GeV}}{\Gamma_{\phi}} \times \frac{r_{fs}}{0.8} \times \frac{r_{inel}}{20} \qquad \frac{r_{fs} \sim 0.6...1.0}{r_{inel} \sim 15...25}
$$

At 8 TeV roughly a factor of 3 smaller, compatible

Fichet, GG, Royon 1512.05751

see also: Csaki, et al : 1601.00638 Harland-Lang et al, 1601.07187

Computation of cross section gives: \bullet

$$
\sigma_{pp\to\gamma\gamma X} = 5.9 \text{ fb} \left(\frac{5 \text{ TeV}}{f_{\gamma}} \right)^4 \frac{45 \text{ GeV}}{\Gamma_{\phi}} \times \frac{r_{fs}}{0.8} \times \frac{r_{inel}}{20} \qquad \frac{r_{fs} \sim 0.6...1.0}{r_{inel} \sim 15...25}
$$

At 8 TeV roughly a factor of 3 smaller, compatible

Fichet, GG, Royon 1512.05751

see also: Csaki, et al : 1601.00638 Harland-Lang et al, 1601.07187

Computation of cross section gives:

$$
\sigma_{pp\to\gamma\gamma X} = 5.9 \text{ fb} \left(\frac{5 \text{ TeV}}{f_{\gamma}}\right)^4 \frac{45 \text{ GeV}}{\Gamma_{\phi}} \times \frac{r_{fs}}{0.8} \times \frac{r_{inel}}{20} \qquad \frac{r_{fs} \sim 0.6...1.0}{r_{inel} \sim 15...25}
$$

At 8 TeV roughly a factor of 3 smaller, compatible

• Fitting this cross section to the excess:

f_γ = 3.9 - 4.9 TeV (68 % CL) $\left[\right. \overline{o(pp \rightarrow \gamma \gamma X)}$ = 8.6 - 20 fb] **•** $f_y = 3.6 - 6.8$ TeV (95 % CL) $\sigma(pp \to \gamma \gamma X) = 2.5 - 33$ fb]

Fichet, GG, Royon 1512.05751

see also: Csaki, et al : 1601.00638 Harland-Lang et al, 1601.07187

• Computation of cross section gives:

$$
\sigma_{pp\to\gamma\gamma X} = 5.9 \text{ fb} \left(\frac{5 \text{ TeV}}{f_{\gamma}}\right)^4 \frac{45 \text{ GeV}}{\Gamma_{\phi}} \times \frac{r_{fs}}{0.8} \times \frac{r_{inel}}{20} \qquad \frac{r_{fs} \sim 0.6...1.0}{r_{inel} \sim 15...25}
$$

At 8 TeV roughly a factor of 3 smaller, compatible

• Fitting this cross section to the excess:

f_γ = 3.9 - 4.9 TeV (68 % CL) $\left[\right. \overline{o(pp \rightarrow \gamma \gamma X)}$ = 8.6 - 20 fb] • $f_{\gamma} = 3.6 - 6.8$ TeV (95 % CL) $\sigma(pp \to \gamma \gamma X) = 2.5 - 33$ fb]

Determination of *fγ* fairly accurate due to *fγ ~ σ -1/4*

2.) A SIMPLE UV MODEL

2.) A SIMPLE UV MODEL

UV completion (renormalizable)

Perturbative (loop generation) of *φγγ* coupling
2.) A SIMPLE UV MODEL

- UV completion (renormalizable)
- Perturbative (loop generation) of *φγγ* coupling
- Introduce *N* (vectorlike) uncolored fermions *ψ* of charge *Q* and mass *m^ψ*

$$
\mathcal{L}_{\phi\psi\psi} = \boxed{\lambda \phi\bar{\psi}\psi}
$$

2.) A SIMPLE UV MODEL

- UV completion (renormalizable)
- Perturbative (loop generation) of *φγγ* coupling
- Introduce *N* (vectorlike) uncolored fermions *ψ* of charge *Q* and mass *m^ψ*

$$
{\cal L}_{\phi\psi\psi}=\boxed{\lambda\,\phi\bar{\psi}\psi}
$$

$$
\frac{1}{f_{\gamma}} = \alpha \frac{\lambda}{4\pi} Q^2 N \frac{2}{m_{\phi}} B(\tau), \quad B(\tau) = \sqrt{\tau} \left[1 + (1 - \tau) \arcsin^2 \left(\tau^{-\frac{1}{2}} \right) \right], \quad \tau = \frac{4m_{\psi}^2}{m_{\phi}}
$$

2.) A SIMPLE UV MODEL

- UV completion (renormalizable)
- Perturbative (loop generation) of *φγγ* coupling
- Introduce *N* (vectorlike) uncolored fermions *ψ* of charge *Q* and mass *m^ψ*

- Width and cross section fix two combinations of *Q, N, m^ψ ,λ*
- For instance: $Q = 5/2$, $N = 3$, $m_\psi = 360$ GeV, $\lambda = 5$
- Still perturbative: $\lambda N^{1/2} \sim 8.6 < 4\pi$

1

 f_γ

CONSTRAINING THE UV COMPLETION

-
-
-
-
-
- -

Drell-Yan (dilepton), constrains *NQ2*

Gross et al 1602.03877 Goertz et al 1602.04801

Drell-Yan (dilepton), constrains *NQ2*

Gross et al 1602.03877 Goertz et al 1602.04801

LbL scattering, constrains *NQ4*

Drell-Yan (dilepton), constrains *NQ2*

Gross et al 1602.03877 Goertz et al 1602.04801

LbL scattering, constrains *NQ4*

and find that the 8 TeV Drell-Yan data already exclude Direct production of *ψ* at LHC…

Drell-Yan (dilepton), constrains *NQ2*

Gross et al 1602.03877 Goertz et al 1602.04801

LbL scattering, constrains *NQ4*

- and find that the 8 TeV Drell-Yan data already exclude Direct production of *ψ* at LHC…
- Landau Poles + Vacuum stability

 $\mathbb{P}^1(\mathbb{R}^d)$ is the second in terms of mass and e $\mathbb{P}^1(\mathbb{R}^d)$ and vectors. in terms and vectors. in

T. Melia, M. Papucci and K. Zurek, arXiv:1512.04928

the case of no requirements of photon conversion at the analysis stage and full integrated luminosity stage and at the medium-luminosity LHC (300 fb¹ [hep-ph]; D. Buttazzo, A. Greljo and D. Marzocca, $T1$. The physical distribution \mathcal{L} 2016 1, 015017 ±151 ±151

PART II: MEASURING THE *φγγ* COUPLING

AIM

AIM

Previous (part I):

- Assumed that only *φγγ* coupling is present (*φgg* and *φqq* vanishing or sufficiently suppressed)
- Determined $\phi\gamma\gamma$ coupling from the excess

AIM

Previous (part I):

- Assumed that only *φγγ* coupling is present (*φgg* and *φqq* vanishing or sufficiently suppressed)
- Determined $\phi\gamma\gamma$ coupling from the excess

Now (part II):

- No assumptions on couplings or production mode (100% model independent)
- Is there a way to measure the *φγγ* coupling? \bullet

• Inelastic production (proton destroyed, dominant)

• Inelastic production (proton destroyed, dominant)

• Inelastic production (proton destroyed, dominant)

Elastic production (protons intact, subdominant)

 \sim Suppression: \sim 10^{-5} \sim 10^{-1}

• Inelastic production (proton destroyed, dominant)

Elastic production (protons intact, subdominant)

$~\rm{Suppression:}~~~\sim10^{-5}~~~\sim10^{-1}$

‣ The inelastic events can be totally suppressed by tagging the intact protons in forward detectors

‣ The inelastic events can be totally suppressed by tagging the intact protons in forward detectors

‣ The inelastic events can be totally suppressed by tagging the intact protons in forward detectors

‣ All inelastic events can be completely rejected

- ‣ Essentially background-free (pile up under control)
- ‣ Installed in CMS, planned in ATLAS

• Inelastic production (proton destroyed, dominant)

• Inelastic production (proton destroyed, dominant)

• Inelastic production (proton destroyed, dominant)

• Inelastic production (proton destroyed, dominant)

Elastic production (protons intact, subdominant)

Allows precision measurement of diphoton coupling!

CROSS SECTION

- Elastic cross section under excellent theoretical control
- With realistic cuts the cross section is

$$
\sigma_{pp\to\gamma\gamma pp} = 0.23 \text{ fb} \left(\frac{5 \text{ TeV}}{f_{\gamma}} \right)^4 \frac{45 \text{ GeV}}{\Gamma_{\phi}} \quad \text{Fichet, GG, Royon} \quad 1601.01712
$$

CROSS SECTION

- Elastic cross section under excellent theoretical control \bullet
- With realistic cuts the cross section is \bullet

$$
\sigma_{pp\to\gamma\gamma pp} = 0.23~{\rm fb}~\left(\frac{5~{\rm TeV}}{f_\gamma}\right)^4\frac{45~{\rm GeV}}{\Gamma_\phi}
$$

Fichet, GG, Royon 1601.01712

CROSS SECTION

- Elastic cross section under excellent theoretical control \bullet
- With realistic cuts the cross section is \bullet

$$
\sigma_{pp\to\gamma\gamma pp} = 0.23~{\rm fb}~\left(\frac{5~{\rm TeV}}{f_\gamma}\right)^4\frac{45~{\rm GeV}}{\Gamma_\phi}\Bigg]
$$

Fichet, GG, Royon 1601.01712

Exclusion power at 68% (95%)

$$
f_{\gamma} > 14 \text{ (11) TeV}
$$
\n
$$
f_{\gamma} > 25 \text{ (19) TeV}
$$

Region preferred by diphoton excess at Γ_{ϕ} = 45 GeV

We would like to stress that our proposal to measure Region excluded $\frac{3}{\ln 2}$ in particular does not make an in particular does not make a $\frac{3}{\ln 2}$ $\sum_{i=1}^n$ by $\frac{1}{n}$ and $\frac{1}{n}$ **Fig. 1** dijet searches by Run - I (8 TeV)

- EXPERIMENTAL CONSTRAINTS FIG. 3. Bounds and sensitivities in the *f f^g* plane, in case \blacktriangleright Dijet searches and elastic γγ fusion are complementary
- \longrightarrow More dat and tegron b and 95% C.L. credible regions corresponding to the observed \blacktriangleright More data will improve both bounds and can cover the entire Limit of the region above which *EW* ⁺*gg* tot = 45 GeV. Dotted (dashed) lines correspond to *EW /* = 1*.*64 (53.9) region predicted by the diphoton excess

QUARK VS PHOTON COUPLING

Region excluded by $Run - I$ $(8 TeV)$ dijet searches

in proferred $T_{\text{preretred}}$ by diphoton excess at Γ_ϕ = 45 GeV We will first argue that *elastic gluon fusion* (EGGF), Region preferred

Elastic γγ fusion: T_{rad} $protonance$ region at 300 fb⁻¹ 95% excludable

emission in the gluon ladder has to be suppressed in order

CONSTRAINTS FROM GAUGE INVARIANCE

$$
c_{\phi\gamma\gamma} = \boxed{\frac{1}{f_\gamma}\phi\,(F_{\mu\nu})^2}
$$

 \bullet Up to now: $\qquad \mathcal{L}_{\phi\gamma\gamma} = \frac{1}{f} \phi \left(F_{\mu\nu} \right)^2$ (not SU(2)xU(1) invariant!)

CONSTRAINTS FROM GAUGE INVARIANCE

• Up to now:
$$
\mathcal{L}_{\phi\gamma\gamma} = \frac{\left(\frac{1}{f_{\gamma}}\phi(F_{\mu\nu})^2\right)}{\sum_{\substack{f_{\gamma} \\ f_{\gamma}}} \frac{1}{f_{\gamma}} = \frac{s_w}{f_W} + \frac{c_w}{f_B}} \left(\frac{1}{f_B}\phi(H_{\mu\nu})^2\right)} \quad \text{(not SU(2)xU(1) invariant!)}
$$
$$
\mathcal{L}_{\phi\gamma\gamma} = \boxed{\frac{1}{f_\gamma}\phi\,(F_{\mu\nu})^2}
$$

 $\bullet\ \textbf{Up to now:}\quad \quad \mathcal{L}_{\phi\gamma\gamma}=\boxed{\frac{\tau}{f}\phi\left(F_{\mu\nu}\right)^2} \quad \quad \textbf{(not SU(2)xU(1) invariant!)}$

f^B

$$
\mathcal{L}_{\phi VV} = \underbrace{\left(\frac{1}{f_W} \phi \left(W_{\mu\nu}\right)^2\right)}_{\text{FW}} + \underbrace{\frac{1}{f_B} \phi \left(B_{\mu\nu}\right)^2}_{\text{FB}} + \underbrace{\frac{c_w}{f_B}}_{\text{FW}}
$$

- Diphoton coupling comes with other couplings
- Two parameters, express in terms of f_γ , $r = f_W / f_B$:

$$
\mathcal{L}_{eff} = \frac{1}{f_{\gamma}} \phi \left(F_{\mu\nu}^2 + \frac{2s_w c_w (r-1)}{c_w^2 r + s_w^2} Z_{\mu\nu} F^{\mu\nu} + \frac{s_w^2 r + c_w^2}{c_w^2 r + s_w^2} Z_{\mu\nu}^2 + \frac{2}{c_w^2 r + s_w^2} |W_{\mu\nu}|^2 \right)
$$

$$
\mathcal{L}_{\phi\gamma\gamma} = \boxed{\frac{1}{f_\gamma} \phi \left(F_{\mu\nu}\right)^2}
$$

• Up to now: $\mathcal{L}_{\phi\gamma\gamma} = \frac{1}{f} \phi \left(F_{\mu\nu} \right)^2$ (not SU(2)xU(1) invariant!)

$$
\mathcal{L}_{\phi VV} = \boxed{\frac{1}{f_W} \phi (W_{\mu\nu})^2 + \frac{1}{f_B} \phi (B_{\mu\nu})^2}
$$

- Diphoton coupling comes with other couplings
- **•** Two parameters, express in terms of f_γ , $r = f_W / f_B$:

$$
\mathcal{L}_{eff} = \frac{1}{f_{\gamma}} \phi \left(F_{\mu\nu}^2 + \frac{2s_w c_w (r-1)}{c_w^2 r + s_w^2} Z_{\mu\nu} F^{\mu\nu} + \frac{s_w^2 r + c_w^2}{c_w^2 r + s_w^2} Z_{\mu\nu}^2 + \frac{2}{c_w^2 r + s_w^2} |W_{\mu\nu}|^2 \right)
$$

Constraints on these couplings exist from run-1 diboson measurements

Strongest constraint: $Z\gamma$

$$
\sigma_{Z\gamma}^8\, {\rm TeV}\, = \sigma_{\gamma\gamma}^{13} \; {\rm TeV}\;\; \frac{\sigma_{\gamma\gamma}^8\, {\rm TeV}}{\sigma_{\gamma\gamma}^{13}\, {\rm TeV}}\;\, \frac{\Gamma_{Z\gamma}}{\Gamma_{\gamma\gamma}}
$$

 \bullet Strongest constraint: Zγ

$$
\gamma \qquad \qquad \boxed{\sigma_{Z\gamma}^8 \text{TeV}} = \sigma_{\gamma\gamma}^{13} \text{ TeV} \quad \frac{\sigma_{\gamma\gamma}^8 \text{TeV}}{\sigma_{\gamma\gamma}^{13} \text{ TeV}} \, \frac{\Gamma_{Z\gamma}}{\Gamma_{\gamma\gamma}}
$$
\n
$$
\text{upper limit (run I)}
$$

CONCLUSIONS

ATLAS and CMS found intriguing excess in diphoton mass spectrum at 750 GeV

- ATLAS and CMS found intriguing excess in diphoton mass spectrum at 750 GeV
- Computed photon fusion cross section for the excess

- ATLAS and CMS found intriguing excess in diphoton mass spectrum at 750 GeV
- Computed photon fusion cross section for the excess
- Simple renormalizable models of uncolored fermions can generate the excess perturbatively

- ATLAS and CMS found intriguing excess in diphoton mass spectrum at 750 GeV
- Computed photon fusion cross section for the excess
- Simple renormalizable models of uncolored fermions can generate the excess perturbatively

- ATLAS and CMS found intriguing excess in diphoton mass spectrum at 750 GeV
- Computed photon fusion cross section for the excess
- Simple renormalizable models of uncolored fermions can generate the excess perturbatively
- In the more general case of arbitrary production mode, photon coupling can be measured in elastic events

- ATLAS and CMS found intriguing excess in diphoton mass spectrum at 750 GeV
- Computed photon fusion cross section for the excess
- Simple renormalizable models of uncolored fermions can generate the excess perturbatively
- In the more general case of arbitrary production mode, photon coupling can be measured in elastic events
- Proton tagging technique allows to remove all inelastic events, background free

- ATLAS and CMS found intriguing excess in diphoton mass spectrum at 750 GeV
- Computed photon fusion cross section for the excess
- Simple renormalizable models of uncolored fermions can generate the excess perturbatively
- In the more general case of arbitrary production mode, photon coupling can be measured in elastic events
- Proton tagging technique allows to remove all inelastic events, background free
- Very good sensitivity to diphoton coupling, complimentary to bounds from dijet searches

- ATLAS and CMS found intriguing excess in diphoton mass spectrum at 750 GeV
- Computed photon fusion cross section for the excess
- Simple renormalizable models of uncolored fermions can generate the excess perturbatively
- In the more general case of arbitrary production mode, photon coupling can be measured in elastic events
- Proton tagging technique allows to remove all inelastic events, background free
- Very good sensitivity to diphoton coupling, complimentary to bounds from dijet searches

