

Physics simulations: resonances in γγ->γγ with CT-PPS

Jonathan Hollar (LIP)

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTICULAS

Introduction

- A number of papers since December consider γγ production of a 750GeV resonance decaying to γγ
- "Easier" scenario than channels studied for CT-PPS TDR: high-mass, low background, very good resolution in central CMS (no jets or missing E_T)
 - Good acceptance near 750GeV (with previous LHC optics from TDR!)

Fichet, von Gersdorff, Royon (arXiv:1601.01712) Fichet, von Gersdorff, Royon (arXiv:1512.05751) Csaki, Hubisz, Terning (arXiv:1512.05776) Csaki, Hubisz, Terning (arXiv:1601.00638) Harland-Lang, Khoze, Ryskin (arXiv:1601.07187) Anchordogui, et al (arXiv:1512.08502) Nomura and Akada (arXiv:1601.00386) d'Eramo, de Vries, Panci (arXiv:1601.01571) Danielsson, Enberg, Ingelman, Mandal (arXiv:1601.00624) Ben-Dayan and Brunstein (arXiv:1601.07564) Martin and Ryskin (arXiv:1601.07774) Barrie, et al (arXiv:1602.00475) Molinaro, Sannino and Vignaroli (arXiv:1602:07574) Abel and Khoze (arXiv:1601.07167)

+ talks from yesterday/today

Previous studies

- Earlier published high-mass
 (>600GeV) γγ->γγ studies in
 context of ATLAS/AFP
 - Indicated good efficiency + bkg. suppression possible with tracking only up to <µ>=50

JHEP 1502 (2015) 165, arXiv:1512:05751

- Fichet, von Gersdorff, Lenzi, Royon, Saimpert (arXiv:1411.6629 + talk yesterday)
- Repeat similar very rough study assuming only central CMS + proton tracking from TOTEM Si strips available

Samples/selection

- * Assume projected ~2016-like luminosity/pileup scenario: 30fb^{-1} , $<\mu>=25$
 - Physics pileup simulated, beam backgrounds not included
- Backgrounds
 - * Inclusive $\gamma\gamma$ +jets generated with Sherpa, scaled to NNLO cross section
 - "Irreducible" SM background from gluon-induced pp->pγγp (Exhume, scaled to section of arXiv: 1411.6629)
- Signal model as used in 2015 CMS inclusive search: RS graviton (spin-2), with m=750GeV and k/ MPl=0.07: σ*BF=0.3 fb
 - Only used to study acceptance, not necessarily meant to be realistic model for the 750GeV ATLAS/CMS excess
- Photon selection: acceptance/pT cuts based on CMS 13TeV inclusive search (EXO-15-004), compatible with 100% efficiency for expected 2016 diphoton trigger
- Protons: CTPPS fast simulation of tracking detectors (but with old LHC optics see talk by Mario)

Diphoton kinematic cuts

•

- SM gluon induced exclusive background already << 1 event in this mass range
- Further suppression of inclusive backgrounds with cuts on photon pair kinematics
 - Exclusive signal should be back-to-back in delta-phi, balanced in pT (pair pT~0 or delta-pT~0 or pT1/pT2~1)
 - * Adopt cuts from ATLAS study (arXiv:1411.6629)
 - * $E_T(\gamma 2) / E_T(\gamma 1) > 0.95$
 - * $\Delta \phi(\gamma \gamma) > \pi 0.01$

Diphoton-diproton matching cuts

- Require mass and rapidity matching cuts between photons and protons
 - * $|m(\gamma\gamma) m(X)| < 25 \text{ GeV}$
 - * $|Y(\gamma \gamma) Y(X)| < 0.06$

6

 (pT ratio and delta-phi cuts inverted to enhance statistics of inclusive background plot)

After diphoton-diproton matching and diphoton kinematic cuts

- Acceptance*efficiency for signal: ~29-41% for 20σ-15σ approach
 - Based on distances used in CT-PPS TDR and previous LHC optics
 - Restricting to events with <=2 pileup protons/arm for Si strip reconstruction retains ~86% of events
- SM backgrounds:
 - * inclusive $\gamma\gamma$ + pileup: <~ 0.1 events
 - Expect inclusive γ+jet and jet+jet backgrounds
 < γγ background after all selections, based on
 CMS inclusive search
 - * SM (gluon-induced) exclusive $\gamma\gamma$: <10^-4 events
 - * Also expect O(ab) visible cross section for SM $\gamma\gamma$ -> $\gamma\gamma$ continuum

Timing detectors

- So far assumed no timing detectors at startup additional options when these are installed
 - Diamond detectors (see talk by Mirko) can be used also for tracking together with or in place of Si strips
 - Subset of events with converted photons can be used to point to collision vertex in CMS
 - Same vertex-finding method used with conversions in CMS H->γγ analyses
 - Reduces statistics, but allows matching with ∆(ToF) of protons, vertex trackcounting

Vertex z position from conversion

- Initial rough look at simulation of exclusive production of a 750GeV resonance in diphoton channel with proton tagging for CT-PPS
 - Qualitatively similar to previously published studies for AFP/ATLAS:
 - * => Large suppression of inclusive backgrounds seems possible using tracking alone, with reasonable acceptance for a 750GeV resonance
 - (LHC optics permitting)
 - Expect similar background suppression for other high-resolution channels with only photons/leptons in central CMS (l⁺l⁻, Zγ and ZZ with leptonic Z decays)
 - * Could have a few $\gamma\gamma$ events in 30fb⁻¹ for assumed σ *BF as low as ~0.3fb
 - Timing detectors will contribute to proton tracking measurements, or to vertex matching with converted photons in CMS (with some loss of statistics) when installed
 - * Timing detectors critical for full physics program including final states with jets, missing E_T

Comparison to dijets

- * x-check with numbers from TDR dijet analysis (mu=25 pileup scenario, including beam backgrounds)
 - 1.7E-4 rejection factor on inclusive dijets, without any ToF or N(tracks) cuts (assuming these factorize from other cuts)
 - * SM inclusive diphoton x-section for 500 < m < 1000 = 227 fb, with k-factor
 - -> ~1 event in 30fb-1, before photon delta-phi and pT cuts

Selection	Exclusive dijets		DPE		SD		Inclusive dijets	
	events	ε (%)	events	ε (%)	events	ε (%)	events	ε (%)
total number of events	652±5	100	290×10^3	100	$2.6 imes 10^6$	100	2.4×10^{10}	100
≥ 2 jets ($p_{\rm T}$ >100 GeV, $ \eta <2.0)$	250±4	38	$25 imes 10^3$	8.7	190×10^3	7.6	$3.4 imes10^8$	1.4
PPS tagging (fiducial)	50±2	8	15×10^3	5.1	12×10^3	0.5	$0.1 imes 10^8$	0.05
no overlap hits in ToF detectors	43±2	7	14×10^3	4.8	$10~(18)\times 10^3$	0.4	$0.1 imes 10^8$	0.04
ToF difference, Δt	30 (23)±2	4.6	$11~(9)\times 10^3$	3.8	$3 imes 10^3$	0.1	$0.3(0.6) imes 10^{6}$	$1 imes 10^{-3}$
$0.70 < [R_{\rm jj} = (M_{\rm jj}/M_{\rm X})] < 1.15$	20 (15)±1	3.1	15 (14)±3	0.01	85 (110)±15	-	$16~(30) \times 10^3$	$1 imes 10^{-4}$
$\Delta(y_{ m jj}-y_{ m X}) < 0.1$	15 (12)±1	2.4	6 (4)±2	-	3 (11)±3	-	$1.8~(3.4) imes 10^3$	-
$N_{\rm tracks}$	7.4 (5.8)±0.4	1.1	0.8 (0.6)±0.3	-	1±1	-	$19(35) \pm 1$	-
≥ 2 jets ($p_{\rm T} > 150$ GeV, $ \eta < 2.0)$	3.5 (2.6)±0.2	0.5	0.2 (0.1)±0.1	-	1±1	-	$9(17) \pm 1$	-
Î								

Acceptance vs. RP approach

* From TDR $\gamma\gamma$ ->WW:

N(20sigma)/N(15sigma) ~ 0.42/0.67
 = 0.63

- Ratio of signal yields, after photon acceptance and pT/delta-phi cuts in central detector:
 - N(20sigma)/N(15sigma) = 0.71

Rapidity acceptance + proton tagging

- Proton tagging acceptance best for central production of a X(750) resonance
 - Forward production corresponds to asymmetric xi, 1 proton often missed
- Spin-2 model: ~70% of signal events have both protons in acceptance (15sigma approach)
 - Spin-0 should be even more central

After diphoton kinematic cuts

- * Remaining background in the range 500 GeV<m($\gamma\gamma$)<1000GeV
 - ~2 inclusive background+pileup candidates
 - <10^-4 gluon-induced SM exclusive background

Gluon-induced excl. diphoton bkg.

* CDF: Signal observed in upper range of theory predictions for $m(\gamma\gamma) = \sim 5-15 \text{ GeV}$

Phys.Rev.Lett. 108 (2012) 081801

JHEP 1211 (2012) 080

• CMS (2010 data): 0 events observed, upper limit just above predictions for $m(\gamma\gamma) > 11 \text{ GeV}$

Spin-2/graviton models

- Resonance decaying to γγ must be spin-0 or spin-2
- * Many papers covering spin-0 possibilities
- Typical spin-2 example: graviton in ED models
- * Pros:
 - Can reproduce hypothetical 750GeV diphoton signal (arXiv:1602:02793)
 - Couples to everything -> many other decay modes possible
- Cons: only marginally consistent (but not completely excluded) with lack of signal in other inclusive searches, especially 1+1-

FIG. 1. The best-fit result to the 13 TeV LHC diphoton excess with a lightest KK graviton. The narrow width approximation is used in the fit. The solid blue line is our best-fit to the 13 TeV ATLAS data. The dashed blue line is the bestfit from a combination of the 13 TeV CMS results (from the CMS collaboration [3]) and our best-fit of the 13 TeV ATLAS data.

arXiv:1602:02793

