ATLAS Forward Proton Detectors and Commissioning

> Maciej Trzebiński for the ATLAS AFP group

Institute of Nuclear Physics Polish Academy of Sciences

LHC Working Group on Forward Physics and Diffraction

CERN, 15th March 2016

AFP Detectors

AFP TDR: CERN-LHCC-2015-009, ATLAS-TDR-024

Phase-1: AFP0+2 (2016)

- 2 horizontal Roman Pot stations at 205 and 217 m in A6R1 installed!
- study beam background in low and high intensity runs
- measure diffractive and exclusive events with one tag (see talk by Rafal)

Phase-2: AFP2+2 (2017+)

- add 2 horizontal RPs at 205 and 217 m in A6L1
- install time-of-flight detectors in far stations on both sides (see talk by Tom)
- measure double tagged diffractive and exclusive events
- deliver diffractive triggers to ATLAS

Station

- based on the CMS-PPS/TOTEM horizontal stations
- two stations installed 18th Jan. on side C
- under LHC vacuum and baked-out since 3 Feb.
- status: connected and fully operational

- technology: ATLAS IBL pixel sensors bonded with FE-14 readout chips
- 4 detectors in each station
- pixel size: 50x250 $\mu {\rm m}^2$
- single layer resolution: $\sim 6 \ \mu m$ in x (see talk by Joern)

- Each RP is kept under secondary vacuum:
 - reduce stress of thin window,
 - allows cooling below 0 deg. (prevents icing of detectors).
- Two vacuum pumps (P1, P2) per arm located in RR17 alcove.
- Four operating modes:
 - mode 1: alternating between P1 and P2,
 - mode 2: use P1, if problem switch to P2,
 - mode 3: use P2, if problem switch to P1,
 - mode 4: use both pumps.
- Small leak observed in near station. Overall leak rate: \sim 0.01 mbar / s.

Cooling System – Connections

Vortex cooling technology – system runs purely on compressed air.

Cooling System – Station

Staged approach:

- precooling of input air in AirCooler box,
- coooling with Vortex tube installed on RP.

Efficient cooling: temp. down to -30 $^{\circ}$ C with detectors powered on.

Operational requirements: -10 ⁰C.

Online temperature regulation.

Temperature sensors (NTC):

- each station:
 - each detector plate (on flex),
 - heat exchanger (NTC + PT1000),
 - pot wall (up + under second thin window),
 - flange (cold output of Vortex tube + HV for ToF),
 - LTB.
- VReg. crate.
- AirCooler box:
 - hot output of VT,
 - cold output of VT,
 - output of box.

Radiation sensors:

- bottom of each pot,
- VReg. crate,
- far station LTB,
- RR17 alcove.

For details see talk of Elżbieta.

Pot Motion and Controls

,,Specification and Validation of the Motion Control System of the ATLAS Forward Proton Roman Pots"

- mechanical stops installed to prevent damage of fragile electrical stop
- retraction with springs to the HOME position tested
- positions of IN, OUT, and HOME switch and Electrical Stop were set according to the laser measurements

Both stations calibrated (18 Feb.)

AFP Beam Interlock System

- copy of ALFA BIS
- AFP Beam Interlock System successfully commissioned from the central DCS up to the LHC interface (CIBU)

- hardware commissioning tests related to the position control of the 2 AFP Roman Pots done:
 - correct mapping and signal distribution of the LHC flags between the AFP Interlock and AFP position control system
 - signal integrity of the HOME SWITCH signal from RP station to AFP interlock and the transmission of the COPY HOME switch back to the PXI
 - EXTRACTION RP SWITCH and OVERRIDE signals from the ATLAS control room
 - HOLIDAY MODE KEY
- status: system is ready for the final production software deployment for PXI+FESA+CCC+DCS, to proceed with the final commissioning tests

2016 Commissioning and Data Taking

Ultimate Goal: measure forward protons with AFP detectors for the study of diffractive processes with ATLAS (see talk by Rafał)

Commissioning:

- commissioning of AFP Beam Interlock System during no-beam (mid-March):
 - motorization control and interlock documentation (draft version available)
 - contact with MPP, participate in relevant meetings
- beam-based alignment (Mid-End April)
- loss maps with first beam (Mid-End April)
- parasitic stand-alone running (in garage) for detector commissioning (NO pot insertion) (End-April)

Data taking:

- after commissioning:
 - participate parasitically in low- μ runs
 - ullet stand-alone data taking with tentative insertion up to 20 σ
 - time period: May-June 2016
- after LHC and ATLAS approvals:
 - participate parasitically in a few end-of-store runs (standard optics)
 - ullet stand-alone data taking with tentative insertion up to 20 σ
 - time period: before September 2016
- after ATLAS review and approvals:
 - \bullet participate in a few standard runs with ATLAS+AFP TDAQ with tentative insertion up to 20 σ
 - time period: before mid-November 2016

ATLAS Forward Proton Detectors

Commissioning – Schedule

Following ATLAS-ALFA tests from 2015 (EDMS 1515678), but a bit more simple (2 stations instead of 8):

- INJECTION PERMITs
 - Removal of the INJECTION PERMIT by a Pot leaving HOME
- Response to the LVDT-to-Limits Comparison (ALL LVDT OK)
- Test of USER PERMIT1 and Automatic Pot Extraction as a Function of All Input Flags
- LVDT Bypass Box
 - Failure during the Run
 - The Forbidden Use Case
 - The Holiday Mode
 - CCC Night-call Failure while Detector is in Standby
- Hardware and Software Buttons
 - Extraction by DCS
 - Disabling by DCS
 - Emergency Extraction by Hardware Button

- Scraping: close collimator to trim the beam.
- Approach the beam with detector.
- Monitor rates in BLMs and AFP sudden increase marks the beam position.

- Move detectors to the operational position (e.g. 20σ).
- Distort beam trajectory.
- Observe rates in BLMs and AFP beam should not touch the Roman pot.

AFP 0+2 was installed ...

... is now in the commissioning phase ...

... with rich physics programme on the way!

This work has been partially supported by Polish National Science Centre under 2012/05/B/ST2/02480 contract and Mobility+ programme number 1285/MOB/IV/2015/0.