

RP Insertions at Low β^* in 2016

LHC Forward WG Meeting 16th March 2016

M. Deile

M > 598 GeV

2015 Run: RP Positions and Diffractive Mass Acceptance Limits

2015: successful RP insertions to ~25 σ at lumi up to 5 x 10³³ cm⁻² s⁻¹ \rightarrow optimistic expectations for 2016

 $\sqrt{s} = 13$ TeV, $\beta^* = 0.8$ m, $\alpha_x = 290$ µrad, $\epsilon_n = 3.5$ µm rad

Detector edge position now:

Removing 0 5mm margin.

Minimum diffractive mass in central diffraction: 2 surviving protons	5
double arm measurement in C & D & E):	
$M = \sqrt{\xi_1 \xi_2 s}$	M > 676 GeV

 $M = \sqrt{\xi_1 \, \xi_2 \, s}$

				01			
	Horizontal RP	$\sigma_{x,beam}$	D _x	$20.7 \sigma + 0.5 mm$ + 0.5 mm (window + gap)	ξ_{min}	20.7σ + 0.5 mm (window + gap)	ξ_{min}
Sector 5-6	XRPH.C6R5.B1	165 μm	-85 mm	4.416 mm	0.052	3.916 mm	0.046
(Beam 1)	XRPH.D6R5.B1	117 µm	-79 mm	3.422 mm	0.043	2.922 mm	0.037
	XRPH.E6R5.B1	102 µm	-77 mm	3.111 mm	0.040	2.611 mm	0.034
Sector 4-5 (Beam 2)	XRPH.C6L5.B2	168 µm	-86 mm	4.478 mm	0.052	3.978 mm	0.046
	XRPH.D6L5.B2	121 µm	-81 mm	3.505 mm	0.043	3.005 mm	0.037
	XRPH.E6L5.B2	106 µm	-78 mm	3.194 mm	0.041	2.694 mm	0.035
Minimu (double :	n diffractive mass in arm measurement in	n central dit C & D & I	ffraction: 2 E):	surviving protons			

Collimation WG

Scenarios for 2016

A: *β**=65 cm

- 160 μ rad half Xing (11 σ BB)
- Remove 2 σ additional margin from 80cm

B: $\beta^*=50$ cm

Use tighter IR7/6 hierarchy, 10 σ BB (165 µrad), better orbit in 2015

$C_{ollimator}$	Setting		Соп		
TCP IR7	5.5		TCP		
TCSG IR7	7.5		TCS		
TCSG IR6	8.3		TCS		
TCDQ IR6	8.3		TCD		
TCT IR1/5	10.0	>	TCT		
P. Aperture	11.5		P. A		
C. Aperture	11.9		C. A		
VDD Vertical: 14.5 sigma					

C: $\beta^* = 40 \, cm$

- In addition to 50 cm rely on phase
- 185 µrad half Xing (10 σ BB)

$C_{ollimator}$	Setting
TCP IR7	5.5
TCSG IR7	7.5
TCSG IR6	8.3
TCDQ IR6	8.3
TCT IR1/5	9.0
P. Aperture	9.9
C. Aperture	10.2
	25

XRP: Vertical: 14.5 sigm Horizontal: 17 sigma

+ orbit margin (0.5 mm ?)

2016 Optics: RP Positions and Diffractive Mass Acceptance Limits

Relative to 2015:

- Beams thicker: RPs further away for given number of sigmas
- Dispersion smaller (due to larger crossing-angle) \rightarrow bigger $\xi_{min} = x_{min} / D$

Positions proposed so far:

	$\gamma_{s} = 13$ TeV, $\beta^{*} = 0.4$ m, $\alpha_{x} = 3/0$ μ rad, $\varepsilon_{n} = 3.5$ μ m rad							
				Roman Pot position:	Detector position:			
	Horizontal RP	$\sigma_{x,beam}$	D _x	$17 \sigma + 0.5 mm$	$17 \sigma + 0.5 mm$ + window + gap	ξ_{min}		
Sector 5-6	XRPH.C6R5.B1	213 µm	-74.9 mm	$4.121 \text{ mm} = 19.3 \sigma$	$4.421 \text{ mm} = 20.7 \sigma$	0.059		
(Beam 1)	XRPH.D6R5.B1	144 µm	-71.7 mm	$2.948 \text{ mm} = 20.5 \sigma$	$3.248 \text{ mm} = 22.6 \sigma$	0.045		
	XRPH.E6R5.B1	120 µm	-70.6 mm	$2.540 \text{ mm} = 21.2 \sigma$	$3.040 \text{ mm} = 25.3 \sigma$	0.043		

 $\sqrt{s} = 13$ TeV, $\beta^* = 0.4$ m, $\alpha_x = 370$ µrad, $\varepsilon_n = 3.5$ µm rad

 $M = \sqrt{\xi_1 \, \xi_2 \, s}$

M > 767 GeV

→ Strategy in collaboration with machine:

- Try to increase the dispersion by $\sim 20 \text{ mm}$
- Investigate how close the RPs can safely approach the beam (try to be less conservative but still safe)

Production Rapidity in Central Diffraction

Production rapidity y of a central diffractive state

is determined by momentum asymmetry of the two surviving protons in central diffraction:

$$y = \frac{1}{2} \ln \frac{\xi_1}{\xi_2}$$
 $M^2 = \xi_1 \xi_2 s$

minimum M and y = 0 only for $\xi_1 = \xi_2$ wider ξ range \rightarrow larger visible phase space \rightarrow more acceptance

Central production of the possible resonance at ~750 GeV:

$$y_{\text{max}} = \ln \frac{M}{\xi_{\text{min}} \sqrt{s}}$$
 with M = 750 GeV, $\sqrt{s} = 13$ TeV goal: $y_{\text{max}} \sim 0.5$ with full double arm

Limiting RPs for acceptance: C6R5, C6L5 (i.e. 210-N)

 $d_{RP} = d_{detector} - 0.3 \text{mm} = D\xi_{min} - 0.3 \text{mm}$ assuming full acceptance at d + 0.3 mm (window + gap)

d _{RP} (210-N)	d _{detector}	ξ_{\min}	y _{max}	
19.3 σ	20.8 σ	0.059		
17.8 σ	19.2 σ	0.055	0.05	
16 σ	17.4 σ	0.049	0.16	
15 σ	16.4 σ	0.047	0.21	
11 σ	12.4 σ	0.035	0.50	unrealistically close
5.6 σ	7.0 σ	0.02	1	
1.4 σ	2.8 σ	0.008	2	

 $\beta^* = 0.4 \text{ m}, \alpha_x = 370 \mu rad, D_x = -74.9 \text{ mm} \text{ (without improvement)}$

Phase Space of RP Approach

Horizontal RP approach to N σ_x needed to reach $\xi_{min} = 0.035$ or rapidity $y_{max} = 0.5$

ТОТЕМ

higher dispersion via orbit bumps

Backup

Rapidity and ξ Acceptance vs. Dispersion

TOTEM

 $y_{\text{max}} = \ln \frac{M}{\xi_{\text{min}} \sqrt{s}}$ with M = 750 GeV, $\sqrt{s} = 13$ TeV

 β * = 0.4m, RP 210-N (i.e. fixed $\sigma_{x,beam}$ = 0.213 mm)

