
11.02.2016

Continuous Buffers in the HLT Data

Transport

David Rohr, drohr@cern.ch

Frankfurt Institute for Advanced Studies

CERN, 11.2.2016

mailto:drohr@cern.ch

111.02.2016

HLT PCIe Data Input Buffers

• The HLT data transport frameworks uses shared buffers to transfer data between processing components.

• SYSV Shared Buffer for transfer between two processing components.

• libPDA CRORC Buffers for the transfer from the CRORC to the first component.

• All buffers are contiguous, i.e. there are no pages.

• Components may opt to create multiple output data buffers if desired, but there is no general limitation of the buffer size.

• In physical memory, the buffers are not continuous, but in user-space they are.

• libPDA has different methods of buffer access:

• It can create kernel-space buffers itself, and map them into user-space. (Currently done in the HLT)

• It can take existing user-space shared POSIX buffers and register them for the PCIe device. (Planned for CBM)

– The second option is forseen to have common buffers for Infiniband and Data Read Our Receiver.

• Everything is transparent to the user code in the processing component:

• The component does not know whether its input buffer is filled by the CRORC or by another component.

• The buffer is always continuous, the component does not have to bother with buffer pages  simplifies data access.

211.02.2016

HLT Ring Buffer

• The CRORC writes to a ring buffer,

which is mapped twice.

Ring Buffer

CRORC

Data Input

Event 1

Event 2

Event 3

Event 4

Current

Event

(See talk by Heiko Engel in CWG3:

https://indico.cern.ch/event/485802/contribution/5/attachments/1215705/1775226/PDA.pdf)

Event 1

Event 2

Event 3

Event 4

Current

Event

Event 1

Event 2

Event 3

Event 4

Current

Event

D
o

u
b

le
 M

a
p

p
in

g
 o

f
b

u
ff

e
rs

Event 1

Event 2

Event 3

Event 4

Current

Event

The user code

can access

continuous buffers

(Buffer

wrap-around

is hidden)

311.02.2016

HLT Ring Buffer

• The user code extracts the data from the ring buffer in the same order as it is inserted.

Ring Buffer

CRORC

Data Input

Event

extracted

Event 2

Event 3

Event 4

Current

Event
User

Component

The component processes event

2, afterward it is removed from

the ring buffer.

411.02.2016

Ring Buffer Limitation

• The ring buffer poses a limitation, when the events are not removed fast enough.

• In particular, when the later events are removed in the same order they are inserted.

• We remove the events in the order we insert them.

• But: In parallel.

 Hence, if there is one big event, and then many small events, the small events are removed faster.

 The big event stays in the buffer, and could possibly block it.

• In reality, we do not have this problem:

• Our FEP (Input nodes) have as much memory as the processing nodes.

 We can make the buffer really large, which will hide the problem (in worst case sacrificing some

processing capabilities on the input nodes).

• If a single ring-buffer is insufficient, one could a more elaborate construct like a multi-ring buffer.

• Finally, in the HLT we have 1-2 GB buffer size per DDL, and it is well sufficient, so it uses only 10%

of the memory.

• We did not have to spend any additional effort to make sure the buffers are sufficient.

