Topics on NNLO calculations Babis Anastasiou ETH Zurich ### Tevatron is sensitive to a Higgs boson Tevatron Run II Preliminary, L=0.9-4.2 fb⁻¹ Revatron Data Background - A complicated search for a very small number of signal events in a large background. - Requires very precise knowledge of the Higgs total cross-section - And every bit of information on kinematic differences for signal and background events #### Role of NNLO computations | $\sigma_{\rm inc}$ [fb] | LO NLO | | NNLO | $K^{ m NLO}$ | $K^{ m NNLO}$ | | |-------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--| | $\mu = m_{ m H}/2$ | 1.998 ± 0.003 | 4.288 ± 0.004 | 5.252 ± 0.016 | 2.149 ± 0.008 | 2.629 ± 0.009 | | | $\mu=m_{ m H}$ | 1.398 ± 0.001 | 3.366 ± 0.003 | 4.630 ± 0.010 | 2.412 ± 0.002 | 3.312 ± 0.008 | | | $\mu=2m_{ m H}$ | 1.004 ± 0.001 | 2.661 ± 0.002 | 4.012 ± 0.007 | 2.651 ± 0.008 | 3.996 ± 0.008 | | - Very large QCD corrections at NLO and NNLO. Tevatron is insensitive to a Higgs signal at NLO or LO. - Very small theoretical uncertainty at NNLO (~±10% pdfs and ±11% scale variation) - CDF and D0 estimate the theoretical uncertainty on the NNLO cross-section to less than ±12%. ### Detailed kinematics description | | Final state | $e\mu$ | ee | $\mu\mu$ | | |-------|--|--|-------|--------------|--| | Cut 0 | Pre-
selection | lepton ID, leptons with opposite charge and $p_T^{\mu} > 10$ GeV and $p_T^e > 15$ GeV invariant mass $M_{\ell\ell} > 15$ GeV $\mu\mu$: $n_{\rm jet} < 2$ for $p_T^{\rm jet} > 15$ GeV, $\Delta\mathcal{R}(\mu, {\rm jet}) > 0.1$ and $p_T^{\mu} > 15$ GeV for the leading μ | | | | | Cut 1 | Missing Transverse Energy $E_T \hspace{-1.5mm}/\hspace{0.1mm}$ (GeV) | > 20 | > 20 | | | | Cut 2 | $ \!E_T^{ m Scaled} $ | > 6 | > 6 | | | | Cut 3 | $M_T^{min} (\ell, E_T) (\text{GeV})$ | > 20 | > 30 | | | | Cut 4 | $p_{\mathrm{T}}^{\mu\mu} \; (\mathrm{GeV}) \; \mathrm{for} \; n_{\mathrm{jet}} = 0$
$E_{T} \; (\mathrm{GeV}) \; \mathrm{for} \; n_{\mathrm{jet}} = 1$ | | | > 20
> 20 | | | Cut 5 | $\Delta\phi(\ell,\ell)$ | < 2.0 | < 2.0 | < 2.5 | | | 0.05 | DØ Preliminary, L=3.0-4.2 fb ¹ | |---------------|---| | ts/(| Data Higgs Signal (M _H =165 GeV) | | Events / 0.05 | 10 ⁵ Top | | щ | Diboson W jets | | | W+jets Z+jets | | | Multijets | | | 102 | | | 10 | | | | | | 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 | | | NN Ouput | | | | | | ee pre-selection | ee final | $e\mu$ pre-selection | | $\mu\mu$ pre-selection | $\mu\mu$ final | |----------------------------------|------------------|---------------------|----------------------|---------------------|------------------------|-----------------| | $Z \rightarrow ee$ | 218695 ± 704 | 108 ± 14 | 280.6 ± 3.3 | $0.0^{+0.1}_{-0.0}$ | _ | _ | | $Z ightarrow \mu \mu$ | _ | _ | 274.6 ± 0.9 | 5.8 ± 0.1 | 235670 ± 158 | 3921 ± 22 | | Z ightarrow au au | 1135 ± 16 | 1.4 ± 0.5 | 3260 ± 3 | 7.3 ± 0.1 | 1735 ± 10 | 66 ± 2 | | t ar t | 131.4 ± 1.4 | 39.9 ± 0.8 | 272.0 ± 0.3 | 82.5 ± 0.2 | 19.93 ± 0.05 | 12.55 ± 0.04 | | W+jets | 241 ± 5 | 98 ± 3 | 183 ± 4 | 78.6 ± 2.8 | 214 ± 7 | 134 ± 5 | | WW | 172.2 ± 2.6 | 66.8 ± 1.6 | 421.2 ± 0.1 | 154.7 ± 0.1 | 159.0 ± 0.3 | 92.8 ± 0.3 | | WZ | 112.5 ± 0.2 | 9.68 ± 0.05 | 20.5 ± 0.1 | 6.6 ± 0.1 | 47.3 ± 0.5 | 19.4 ± 0.3 | | ZZ | 98.2 ± 0.2 | 7.68 ± 0.07 | 5.3 ± 0.1 | 0.60 ± 0.01 | 40.5 ± 0.2 | 15.1 ± 0.1 | | Multijet | 1351 ± 55 | $1.7^{+2.0}_{-1.7}$ | 279 ± 168 | $1.1^{+9.6}_{-1.1}$ | 386 ± 20 | 64 ± 8 | | Signal $(M_H = 165 \text{ GeV})$ | 9.45 ± 0.01 | 6.13 ± 0.01 | 17.1 ± 0.01 | 12.2 ± 0.1 | 5.43 ± 0.01 | 4.85 ± 0.01 | | Total Background | 221937 ± 707 | 332 ± 15 | 4995 ± 168 | 337 ± 10 | 238272 ± 159 | 4325 ± 24 | | Data | 221530 | 336 | 4995 | 329 | 239923 | 4084 | | NN Analysis Variables | | | | | | | |--|------------------------------------|--|--|--|--|--| | p_T of leading lepton | $p_T(\ell_1)$ | | | | | | | p_T of trailing lepton | $p_T(\ell_2)$ | | | | | | | Minimum of both lepton qualities | $\min(q_{\ell 1}, q_{\ell 2})$ | | | | | | | Vector sum of the transverse momenta of the leptons: | $p_T(\ell_1) + p_T(\ell_2)$ | | | | | | | Scalar sum of the transverse momenta of the jets: | $H_T = \sum_i p_T(\text{jet}_i) $ | | | | | | | Invariant mass of both leptons | $M_{\mathrm{inv}}(\ell_1,\ell_2)$ | | | | | | | Minimal transverse mass of one lepton and E_T | M_T^{min} | | | | | | | Missing transverse energy | E_T | | | | | | | Scalar transverse energy | $E_T^{ m scalar}$ | | | | | | | Azimuthal angle between selected leptons | $\Delta\phi(\ell_1,\ell_2)$ | | | | | | | Solid angle between selected leptons $(e\mu \text{ only})$ | $\Delta\Theta(\ell_1,\ell_2)$ | | | | | | | ΔR between selected leptons ($e\mu$ only) | $\Delta R(\ell_1,\ell_2)$ | | | | | | | Azimuthal angle between leading lepton and E_T | $\Delta\phi(E_T,\ell_1)$ | | | | | | | Azimuthal angle between trailing lepton and \overline{E}_T | $\Delta\phi(E_T,\ell_2)$ | | | | | | TABLE III: Input variables for the NN. ## Kinematics through NNLO | $\sigma_{\rm acc}$ [fb] | LO | NLO NNLO | | $K^{ m NLO}$ | $K^{ m NNLO}$ | | |-------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--| | $\mu=m_{ m H}/2$ | 0.750 ± 0.001 | 1.410 ± 0.003 | 1.459 ± 0.003 | 1.880 ± 0.005 | 1.915 ± 0.025 | | | $\mu=m_{ m H}$ | 0.525 ± 0.001 | 1.129 ± 0.003 | 1.383 ± 0.004 | 2.150 ± 0.007 | 2.594 ± 0.052 | | | $\mu=2m_{ m H}$ | 0.379 ± 0.001 | 0.903 ± 0.002 | 1.242 ± 0.001 | 2.383 ± 0.008 | 3.261 ± 0.048 | | #### Higher order effects vary with selection cuts #### Kinematics at the LHC Figure 1: On the left plot, the cross-section to produce a Higgs boson vetoing events with jets in the central region $|\eta| < 2.5$ and $p_{\rm T}^{\rm jet} > p_{\rm T}^{\rm veto}$ (no other cut is applied). On the right plot, the K-factor as a function of $p_{\rm T}^{\rm veto}$. The dashed horizontal lines correspond to the NLO and NNLO K-factors for the inclusive cross-section. The vertical solid line denotes the value of $p_{\rm T}^{\rm veto}$ in the signal cuts of Section 3. ### Higgs production at NNLO - Indispensable for setting exclusion limits at Tevatron (and at the LHC) - Indispensable for testing the Higgs theory amid the discovery of a Higgs boson. - This is the simplest new physics we are searching for: NNLO will be very important for any simple, statistically clear, new physics search and new couplings measurements. # When is NNLO necessary? - In the Standard Model, I believe that NNLO is important for every known (2 to I) and (2 to 2) LHC process. - This includes, W, Z, Higgs, WW, ZZ, ZW, (W,Z) + I-jet, Higgs+ I-jet, single top, I-jet inclusive. - If W+3-jets or W+4-jets is an important measurable background, then NNLO effects in W+1 or 2 jets must also be measurable. - Theory cross-section errors are an error guess. I guess, such an error guess must be combined linearly with experimental uncertainties (not in quadrature!) # no small NLO K-factors @ LHC $$pp \rightarrow t\bar{t} \quad \frac{\text{NLO}}{\text{LO}}(@Tevatron) = \textbf{1.24} \quad \frac{\text{NLO}}{\text{LO}}(@LHC) = \textbf{1.48}$$ $$\frac{\Delta \sigma_{1-jet}(p_t > 30 GeV)}{\sigma_{NLO}} \sim 60\%$$ (from a review by Campbell, Huston, Stirling) | Transverse | Momentum | of | Leptons | |------------|----------|----|---------| |------------|----------|----|---------| | | ZZ | | W^+W^- | | W^-Z | | W^+Z | | |--------------------------------|------|------|----------|------|--------|------|--------|------| | | LO | NLO | LO | NLO | LO | NLO | LO | NLO | | $\sigma^{\rm tot}({ m MRST})$ | 11.4 | 15.2 | 77.9 | 115 | 11.0 | 19.0 | 17.6 | 30.1 | | $\sigma^{\rm tot}({\rm CTEQ})$ | 11.8 | 15.8 | 81.3 | 120 | 11.4 | 19.6 | 18.6 | 31.9 | | $\sigma^{\rm cut}({ m MRST})$ | 3.95 | 5.31 | 24.6 | 40.4 | 3.41 | 6.44 | 5.08 | 9.38 | | $\sigma^{\rm cut}({\rm CTEQ})$ | 4.09 | 5.51 | 25.6 | 42.0 | 3.59 | 6.72 | 5.32 | 9.83 | (Dixon, Kunszt, Signer) # NNLO collider processes - Drell-Yan production: - inclusive cross-section (Hamberg, van Neerven, Matsuura (1991); Harlander, Kilgore (2002)) - Rapidity distribution (CA, Dixon, Melnikov, Petriello (2003)) - Fully differential (Melnikov, Petriello (2006); Catani, Cieri, Ferrera, de Florian, Grazzini (2009)) - Higgs production: - inclusive cross-section (Harlander, Kilgore (2002); CA, Melnikov (2002); Ravindran, Smith, Neerven (2003)) - fully differential cross-section (CA, Melnikov, Petriello (2004); Catani, Grazzini (2007)) # NNLO collider processes (2) - electron-positron to 3 jets: - Gehrmann, Gehrmann-de Ridder, Glover, Heinrich (2007) - Weinzierl (2008) #### Drell-Yan at NNLO pdf extraction, luminosity monitor, W-mass measurement, Weinberg angle measurement, sanity check at the LHC! # LEP three-jet production at NNLO Amazingly precise data, Beautiful synthesis of diverse QCD effects Precise determination of the strong coupling! E.W.N. Glover G. Heinrich H. Stenzel ## This is a school... no more reviewing! - Active field of research... many opinions... and very difficult technical problems... - Methods work for everything I described... but it is not yet clear to anyone how to do "2 to 2" NNLO calculations - I will focus on methods that I have personal working experience. # Recipe for an NNLO computation - Decide it is worth the effort! (or be out of your mind..) - Compute 2-loop amplitudes - Figure out a method to extract infrared divergences from phase-space integrals over phase-space.