
Topics on NNLO calculations

Babis Anastasiou ETH Zurich

Tevatron is sensitive to a Higgs boson Tevatron Run II Preliminary, L=0.9-4.2 fb⁻¹ Revatron Data Background

- A complicated search for a very small number of signal events in a large background.
- Requires very precise knowledge of the Higgs total cross-section
- And every bit of information on kinematic differences for signal and background events

Role of NNLO computations

$\sigma_{\rm inc}$ [fb]	LO NLO		NNLO	$K^{ m NLO}$	$K^{ m NNLO}$	
$\mu = m_{ m H}/2$	1.998 ± 0.003	4.288 ± 0.004	5.252 ± 0.016	2.149 ± 0.008	2.629 ± 0.009	
$\mu=m_{ m H}$	1.398 ± 0.001	3.366 ± 0.003	4.630 ± 0.010	2.412 ± 0.002	3.312 ± 0.008	
$\mu=2m_{ m H}$	1.004 ± 0.001	2.661 ± 0.002	4.012 ± 0.007	2.651 ± 0.008	3.996 ± 0.008	

- Very large QCD corrections at NLO and NNLO. Tevatron is insensitive to a Higgs signal at NLO or LO.
- Very small theoretical uncertainty at NNLO (~±10% pdfs and ±11% scale variation)
- CDF and D0 estimate the theoretical uncertainty on the NNLO cross-section to less than ±12%.

Detailed kinematics description

	Final state	$e\mu$	ee	$\mu\mu$	
Cut 0	Pre- selection	lepton ID, leptons with opposite charge and $p_T^{\mu} > 10$ GeV and $p_T^e > 15$ GeV invariant mass $M_{\ell\ell} > 15$ GeV $\mu\mu$: $n_{\rm jet} < 2$ for $p_T^{\rm jet} > 15$ GeV, $\Delta\mathcal{R}(\mu, {\rm jet}) > 0.1$ and $p_T^{\mu} > 15$ GeV for the leading μ			
Cut 1	Missing Transverse Energy $E_T \hspace{-1.5mm}/\hspace{0.1mm}$ (GeV)	> 20	> 20		
Cut 2	$ \!E_T^{ m Scaled} $	> 6	> 6		
Cut 3	$M_T^{min} (\ell, E_T) (\text{GeV})$	> 20	> 30		
Cut 4	$p_{\mathrm{T}}^{\mu\mu} \; (\mathrm{GeV}) \; \mathrm{for} \; n_{\mathrm{jet}} = 0$ $E_{T} \; (\mathrm{GeV}) \; \mathrm{for} \; n_{\mathrm{jet}} = 1$			> 20 > 20	
Cut 5	$\Delta\phi(\ell,\ell)$	< 2.0	< 2.0	< 2.5	

0.05	DØ Preliminary, L=3.0-4.2 fb ¹
ts/(Data Higgs Signal (M _H =165 GeV)
Events / 0.05	10 ⁵ Top
щ	Diboson W jets
	W+jets Z+jets
	Multijets
	102
	10
	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
	NN Ouput

	ee pre-selection	ee final	$e\mu$ pre-selection		$\mu\mu$ pre-selection	$\mu\mu$ final
$Z \rightarrow ee$	218695 ± 704	108 ± 14	280.6 ± 3.3	$0.0^{+0.1}_{-0.0}$	_	_
$Z ightarrow \mu \mu$	_	_	274.6 ± 0.9	5.8 ± 0.1	235670 ± 158	3921 ± 22
Z ightarrow au au	1135 ± 16	1.4 ± 0.5	3260 ± 3	7.3 ± 0.1	1735 ± 10	66 ± 2
t ar t	131.4 ± 1.4	39.9 ± 0.8	272.0 ± 0.3	82.5 ± 0.2	19.93 ± 0.05	12.55 ± 0.04
W+jets	241 ± 5	98 ± 3	183 ± 4	78.6 ± 2.8	214 ± 7	134 ± 5
WW	172.2 ± 2.6	66.8 ± 1.6	421.2 ± 0.1	154.7 ± 0.1	159.0 ± 0.3	92.8 ± 0.3
WZ	112.5 ± 0.2	9.68 ± 0.05	20.5 ± 0.1	6.6 ± 0.1	47.3 ± 0.5	19.4 ± 0.3
ZZ	98.2 ± 0.2	7.68 ± 0.07	5.3 ± 0.1	0.60 ± 0.01	40.5 ± 0.2	15.1 ± 0.1
Multijet	1351 ± 55	$1.7^{+2.0}_{-1.7}$	279 ± 168	$1.1^{+9.6}_{-1.1}$	386 ± 20	64 ± 8
Signal $(M_H = 165 \text{ GeV})$	9.45 ± 0.01	6.13 ± 0.01	17.1 ± 0.01	12.2 ± 0.1	5.43 ± 0.01	4.85 ± 0.01
Total Background	221937 ± 707	332 ± 15	4995 ± 168	337 ± 10	238272 ± 159	4325 ± 24
Data	221530	336	4995	329	239923	4084

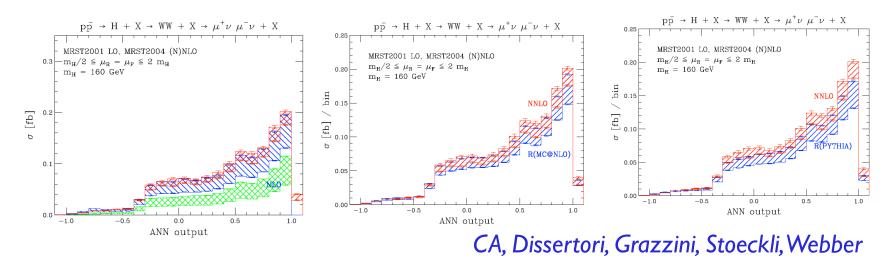

NN Analysis Variables						
p_T of leading lepton	$p_T(\ell_1)$					
p_T of trailing lepton	$p_T(\ell_2)$					
Minimum of both lepton qualities	$\min(q_{\ell 1}, q_{\ell 2})$					
Vector sum of the transverse momenta of the leptons:	$p_T(\ell_1) + p_T(\ell_2)$					
Scalar sum of the transverse momenta of the jets:	$H_T = \sum_i p_T(\text{jet}_i) $					
Invariant mass of both leptons	$M_{\mathrm{inv}}(\ell_1,\ell_2)$					
Minimal transverse mass of one lepton and E_T	M_T^{min}					
Missing transverse energy	E_T					
Scalar transverse energy	$E_T^{ m scalar}$					
Azimuthal angle between selected leptons	$\Delta\phi(\ell_1,\ell_2)$					
Solid angle between selected leptons $(e\mu \text{ only})$	$\Delta\Theta(\ell_1,\ell_2)$					
ΔR between selected leptons ($e\mu$ only)	$\Delta R(\ell_1,\ell_2)$					
Azimuthal angle between leading lepton and E_T	$\Delta\phi(E_T,\ell_1)$					
Azimuthal angle between trailing lepton and \overline{E}_T	$\Delta\phi(E_T,\ell_2)$					

TABLE III: Input variables for the NN.

Kinematics through NNLO

$\sigma_{\rm acc}$ [fb]	LO	NLO NNLO		$K^{ m NLO}$	$K^{ m NNLO}$	
$\mu=m_{ m H}/2$	0.750 ± 0.001	1.410 ± 0.003	1.459 ± 0.003	1.880 ± 0.005	1.915 ± 0.025	
$\mu=m_{ m H}$	0.525 ± 0.001	1.129 ± 0.003	1.383 ± 0.004	2.150 ± 0.007	2.594 ± 0.052	
$\mu=2m_{ m H}$	0.379 ± 0.001	0.903 ± 0.002	1.242 ± 0.001	2.383 ± 0.008	3.261 ± 0.048	

Higher order effects vary with selection cuts

Kinematics at the LHC



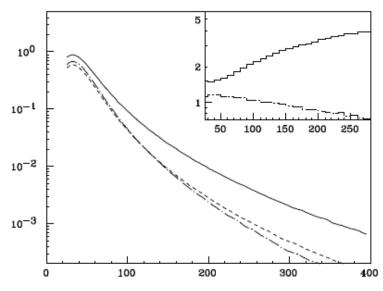
Figure 1: On the left plot, the cross-section to produce a Higgs boson vetoing events with jets in the central region $|\eta| < 2.5$ and $p_{\rm T}^{\rm jet} > p_{\rm T}^{\rm veto}$ (no other cut is applied). On the right plot, the K-factor as a function of $p_{\rm T}^{\rm veto}$. The dashed horizontal lines correspond to the NLO and NNLO K-factors for the inclusive cross-section. The vertical solid line denotes the value of $p_{\rm T}^{\rm veto}$ in the signal cuts of Section 3.

Higgs production at NNLO

- Indispensable for setting exclusion limits at Tevatron (and at the LHC)
- Indispensable for testing the Higgs theory amid the discovery of a Higgs boson.
- This is the simplest new physics we are searching for: NNLO will be very important for any simple, statistically clear, new physics search and new couplings measurements.

When is NNLO necessary?

- In the Standard Model, I believe that NNLO is important for every known (2 to I) and (2 to 2) LHC process.
- This includes, W, Z, Higgs, WW, ZZ, ZW, (W,Z)
 + I-jet, Higgs+ I-jet, single top, I-jet inclusive.
- If W+3-jets or W+4-jets is an important measurable background, then NNLO effects in W+1 or 2 jets must also be measurable.
- Theory cross-section errors are an error guess.
 I guess, such an error guess must be combined linearly with experimental uncertainties (not in quadrature!)


no small NLO K-factors @ LHC

$$pp \rightarrow t\bar{t} \quad \frac{\text{NLO}}{\text{LO}}(@Tevatron) = \textbf{1.24} \quad \frac{\text{NLO}}{\text{LO}}(@LHC) = \textbf{1.48}$$

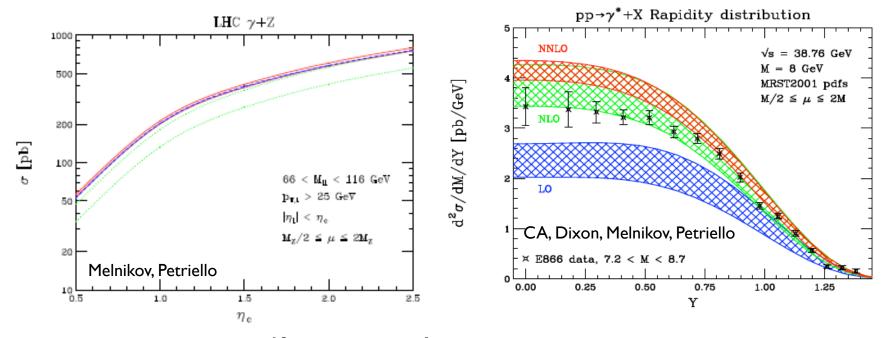
$$\frac{\Delta \sigma_{1-jet}(p_t > 30 GeV)}{\sigma_{NLO}} \sim 60\%$$

(from a review by Campbell, Huston, Stirling)

Transverse	Momentum	of	Leptons
------------	----------	----	---------

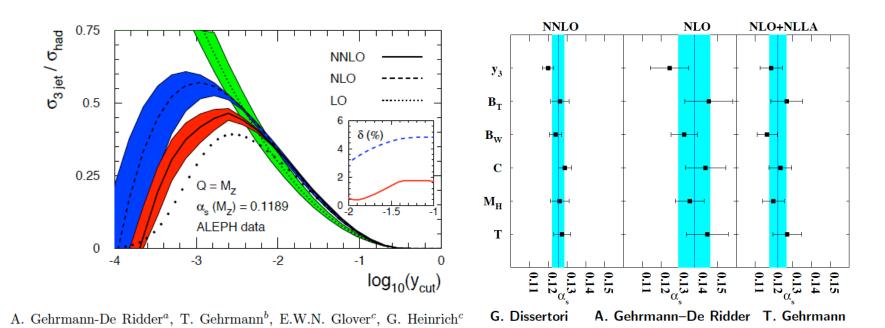
	ZZ		W^+W^-		W^-Z		W^+Z	
	LO	NLO	LO	NLO	LO	NLO	LO	NLO
$\sigma^{\rm tot}({ m MRST})$	11.4	15.2	77.9	115	11.0	19.0	17.6	30.1
$\sigma^{\rm tot}({\rm CTEQ})$	11.8	15.8	81.3	120	11.4	19.6	18.6	31.9
$\sigma^{\rm cut}({ m MRST})$	3.95	5.31	24.6	40.4	3.41	6.44	5.08	9.38
$\sigma^{\rm cut}({\rm CTEQ})$	4.09	5.51	25.6	42.0	3.59	6.72	5.32	9.83

(Dixon, Kunszt, Signer)


NNLO collider processes

- Drell-Yan production:
 - inclusive cross-section (Hamberg, van Neerven, Matsuura (1991); Harlander, Kilgore (2002))
 - Rapidity distribution (CA, Dixon, Melnikov, Petriello (2003))
 - Fully differential (Melnikov, Petriello (2006); Catani, Cieri, Ferrera, de Florian, Grazzini (2009))
- Higgs production:
 - inclusive cross-section (Harlander, Kilgore (2002); CA, Melnikov (2002); Ravindran, Smith, Neerven (2003))
 - fully differential cross-section (CA, Melnikov, Petriello (2004); Catani, Grazzini (2007))

NNLO collider processes (2)


- electron-positron to 3 jets:
 - Gehrmann, Gehrmann-de Ridder, Glover, Heinrich (2007)
 - Weinzierl (2008)

Drell-Yan at NNLO

pdf extraction, luminosity monitor, W-mass measurement, Weinberg angle measurement, sanity check at the LHC!

LEP three-jet production at NNLO

Amazingly precise data,
Beautiful synthesis of diverse QCD effects
Precise determination of the strong coupling!

E.W.N. Glover G. Heinrich H. Stenzel

This is a school... no more reviewing!

- Active field of research... many opinions... and very difficult technical problems...
- Methods work for everything I described... but it is not yet clear to anyone how to do "2 to 2" NNLO calculations
- I will focus on methods that I have personal working experience.

Recipe for an NNLO computation

- Decide it is worth the effort! (or be out of your mind..)
- Compute 2-loop amplitudes
- Figure out a method to extract infrared divergences from phase-space integrals over phase-space.