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Shower basics: Collinear factorization

QCD emissions are enhanced near the collinear limit

Cross sections
factorize near
collinear limit

|Mn+1|2dΦn+1� |Mn|2dΦn
αs

2π

dt

t
Pq,qg(z)dz

dφ

2π

t : hardness (either virtuality or pT
2 orE2θ2 etc.)

z = k0/(k0 + l0) : energy (or p‖, or p+) fraction of quark

Pq,qg(z) = CF
1 + z2

1− z
: Altarelli−Parisi splitting function

(ignore z→ 1 IR divergence for now)
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If another gluon becomes collinear, iterate the previous formula:

θ ′, θ→ 0
with θ ′> θ

|Mn+1|
2dΦn+1� |Mn−1|

2dΦn−1×
αs

2π

dt′

t′
Pq,qg(z

′)dz′ dφ′

2π
×

αs

2π

dt

t
Pq,qg(z)dz

dφ

2π
θ(t′− t)

Collinear partons can be described by a factorized integral ordered in t.

For m collinear emissions:

(

αs

2π

)m
∫

θm in

dθ1

θ1

∫

θ1

dθ2

θ2
� ∫

θm−1

dθm

θm
∝

logm 1

θm in
2

m!
≈

(

αs

2π

)m logmQ2

Λ2

m!

where we have taken θmin ≈Λ/Q; (Leading Logs) This is of order 1!

Typical dominant configuration at very high Q2
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Besides q→ qg, also g→ gg,
g→ qq̄ come into play.

Typical configurations: intermediate
angles of order of geometric average
of upstream and downstream angles.

Each angle is O(αs) smaller than its
upstream angle, and O(αs) bigger
than its downstream angle.

As relative momenta become smaller
αs becomes bigger, and this picture
breaks down.
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For a consistent description:
include virtual corrections to same LL approximation

One can show that the effect of virtual corrections is given by

• Let α(µ)� α(t) in each vertex, where t is the hardness of the
vertex (i.e. hardness of the incoming line)

• For each intermediate line include the factor

∆i(th, tl)= exp



 −
∑

(jk)

∫

tl

th dt′

t′

∫

dz
αs(t′)

2π
Pi,jk(z)





where th is the hardness of the vertex originating the line, and tl is the
hardness of the vertex where the line ends.
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Sudakov form factor

∆i(th, tl) = exp



 −
∑

(jk)

∫

tl

th dt′

t′

∫

dz
αs(t′)

2π
Pi,jk(z)





As tl becomes small the exponent tend to diverge, and ∆i(th, tl) approaches 0.
In fact, because of αs(t), we must stop at t0 & ΛQCD.
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Final Recipe

• Consider all tree graphs.

• Assign ordered hardness parameters t to each vertex.

• Include a factor
αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π
at each vertex i→ jk.

• Include a factor ∆i(t1, t2) to each internal line with a parton i, from
hardness t1 to hardness t2.

• Include a factor ∆i(t, t0) on final lines (t0: IR cutoff)
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Most important: the shower recipe can be easily
implemented as a computer code!

Shower Algorithm:

• Generate a uniform random number 0 < r < 1;

• Solve the equation ∆i(t, t
′) = r for t′;

• If t′< t0 stop here (final state line);

• generate z, jk with probability Pi,jk(z), and 0 < φ < 2π uniformly;

• restart from each branch, with hardness parameter t′.
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Probabilistic intepretation: branching probability of line of flavor i

dP (t1, t)= exp



 −
∑

(jk)

∫

t

t1 dt′

t′

∫

dz
αs(t

′)

2π
Pi,jk(z)



�
∆(t1,t)

αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π

break up t1, t into small subintervals:

dP (t1, t) =











∏

m









1−
∑

(jk)

δt

tm

∫

dz
αs(tm)

2π
Pi,jk(z)�

No em ission prob . in tm,tm+δt



















αs(t)

2π
Pi,jk(z)

δt

t
dz

dφ

2π�
em ission prob . in t,t+δt

So: the probability for the first branching at hardness t is the product of the
non-emission probability ∆(t1, t) in all hardness intervals between t1 and t,
times the emission probability at hardness t.
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(more or less) obvious consequences:

• The total branching probability plus the no-branching probability is 1;

mathematically

∫

t0

t1

dP (t1, t
′)=

∫

t0

t1

d∆i(t1, t
′) = 1−∆i(t1, t0)

• The Sudakov form factor ∆i(t1, t) is the no-branching probability

from scale t1 down to the scale t.

• The branching probability is independent of what happens next

(because the total probability of what happens next is 1).

This property is often called unitarity of the shower. It is a consequence of the

Kinoshita-Lee-Nauenberg theorem: collinear divergence must cancel in the

inclusive cross section.
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COLOUR AND HADRONIZATION

SMC’s assign colour labels to partons.

Only colour connections are recorded (as in large N limit).

Initial colour assigned according to hard cross section.

Colour assignements are used in the hadronization model.

Most popular models: Lund String Model, Cluster Model.

In all models, color singlect structures are formed out of colour connected par-
tons, and are decayed into hadrons preserving energy and momentum.
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NLO Calculations
Scale uncertainty

αs
n(2µ)≈αs

n(µ)(1− b0αs(µ)log(4))n≈αs(µ)(1−nαs(µ))

For µ = 100GeV, αs = 0.12;
uncertainty:

W + 1J W + 2J W + 3J

± 12% ± 24% ± 36%

To improve on this, need to go to NLO

Positive experience with NLO calculations at LEP, HERA, Tevatron

(we TRUST perturbative QCD after LEP!).

Huge NLO effort towards LHC physics

But: NLO results are cumbersome and unfriendly: typically made up of an n-
body (Born+Virtual+Soft and Collinear remnants) and n + 1 body (real emis-
sion) terms, both divergent (finite only when summed up).
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Simple example: Z production

“Real” contribution to q q̄ → Z + X:

CF

Nc

gZ
2 gs

2

32π2

1

S

[

2(1+ y2)ξ2 +8(1− ξ)
]

{

1

2

(

1

ξ

)

+

[

(

1

1− y

)

+

+

(

1

1− y

)

−

]}

dξdydYZ

where

• YZ is the Z rapidity

• y = cos θ, θ being the emission angle of the gluon in the partonic CM

• ξ = 2k0/ s
√

in the partonic CM ( s= (p1 + p2)
2)

(

1

ξ

)

+

= lim
ǫ→0

[

1

ξ + ǫ
− log

1

ǫ
δ(ξ)

]

;

∫

0

1 (

1

ξ

)

+

= 0;

∫

−1

1 (

1

1± y

)

+

= 0,

14



Divergent contributions to the cross section for pT
Z > 0 (i.e. ξ > 0, 1 ± y > 0),

compensated by negative divergences (i.e. δ(ξ), δ(1 ± y) terms) at pT
Z = 0,

that arise from the virtual corrections.

pT
Z at NLO:

Negative contributions at

pT
Z = 0 compensate the

diverging real contributions.
For small enough histogram
bins the first bin will always
turn negative!

A negative bin means: O(αs) corrections larger than Born term:
cannot trust perturbation theory!

One should carefully decide the appropriate bin size around the origin.
For more complex processes this becomes a requirement on jet parameters.

15



So: merging Showers and NLO is not only a problem of overcounting
(as with LO matrix elements and showers). Some sort of resummation of the
diverging virtual corrections should be carried out, in order to get sensible
results in the dangerous regions of collinear and soft emissions.

The key to the solution: the dangerous region is well described by the
factorization formula. For example, for y→ 1 our cross section becomes

CF

Nc

gZ
2 gs

2

16π2

1

S

[

x2 +1

(1− x)+

]

dy

1− y
dξ dy dYW , withx = 1− ξ

The problem of diverging negative virtual corrections is dealt with and solved
in the Shower formalism.

In the following: assume that the hardest SMC radiation is the first one,
i.e. that the Shower is ordered in relative pT . We deal later with the subtle
issue of the choice of the ordering variable.
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Look back at the cross section for the first emission in a Shower Monte Carlo

dσ = dΦB B(ΦB)



 ∆tI,t0�
No rad iation

+
∑

(jk)

∆tI,t
αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π�
rad iation





• tI is the maximum hardness allowed initially, t0 is the minimum hardness of emission

• ∆tI,t is the no-radiation probability with hardness > t

∆i(tI , t)= exp



 −

∑

(jk)

∫

t

tI dt′

t′

∫

dz
αs(t′)

2π
Pi,jk(z)





Expand the Shower formula at order O(αs):

dσ = dΦB B(ΦB)









1−
∑

(jk)

∫

t0

tI dt′

t′

∫

dz
αs

2π
Pi,jk(z)�

virtual

+
∑

(jk)

αs

2π
Pi,jk(z)

dt

t
dz

dφ

2π�
rea l







As in the NLO calculation, we have a negative divergent contribution
for no radiation, and a positive divergent contribution for radiation.
The divergence cancels for inclusive cross sections.
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So: the SMC has his own approximate NLO virtual and real terms. To get
NLO accuracy these terms should be modified to yield the exact NLO.

Notice that SMC algorithms reconstruct from Born kinematics ΦB

and radiation variables t, z, φ, the full phase space Φ (momentum reshuffling)
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MC@NLO (2002, Frixione+Webber)

Add difference between exact NLO
and approximate (MC) NLO.

• Must use MC kinematics

• Difference should be regular
(if the MC is OK)

• Difference may be negative

Several collider processes already there:
Vector Bosons, Vector Bosons pairs,
Higgs, Single Top (also with W ),
Heavy Quarks, Higgs+W/Z.
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How it works (roughly)

The cross section for the hardest event in MC@NLO is

dσ = B̄
M C(ΦB)dΦB�

S event







∆t0
M C + ∆t

M C RM C(Φ)

B(ΦB)
dΦr

M C�
MC shower







+

[

R(Φ)−RM C(Φ)�
H event

]

dΦ

B̄
M C(ΦB)= B(ΦB) +







V (ΦB)�
infin ite

+

∫

RM C(Φ) dΦr
MC�

infin ite





�
finite

Imagine that soft and collinear
singularities in RMC are regulated
as in V .

The full phase space Φ in parametrized in terms of the Born phase space ΦB

and the radiation variables of the MC Φr
M C (typically z, t, φ), according to the

MC procedure (reshuffling) that yields Φ from ΦB and Φr
M C .

B : Born cross section; V : exact virtual cross section.
RMC : radiation cross section in the MC, typically: RMC = B

1

t

α

2π
P (z)

R : exact radiation cross section;
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We can check that the O(αs) expansion of dσ coincides with the exact NLO;

dσ = B̄
M C(ΦB)dΦB

[

∆t0

M C +∆t
M C RM C(Φ)

B(ΦB)
dΦr

M C

]

+ [R(Φ)−RM C(Φ)]dΦ

B̄
M C(ΦB) = B(ΦB)+

[

V (ΦB) +

∫

RM C(Φ) dΦr
MC

]

Expand:

dσ =

[

B + V +

∫

RM CdΦr
M C

]

dΦB

[

1−

∫

RM C

B
dΦr

M C +
RM C

B
dΦr

M C

]

+ [R −RM C ]dΦ

= [B + V ]dΦB + BdΦB

[ ∫

RM C

B
dΦr

M C −

∫

RM C

B
dΦr

M C +
RM C

B
dΦr

M C

]

+ [R −RM C ] dΦ

= [B + V ]dΦB + BdΦB

[

RM C

B
dΦr

M C

]

+ [R −RM C ] dΦ = [B + V ]dΦB + RdΦ
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Recipe for MC@NLO

• Compute totals for S and H events:

σS =

∫

|B̄M C

(ΦB)|dΦB, σH =

∫

|R−RM C |dΦ

• Chose an S or H event with probability proportional to σS, σH

• For an S event:

− generate Born kinematics with probability

|B̄M C(ΦB)|=

∣

∣

∣

∣

B(ΦB) +

[

V (ΦB) +

∫

RM C(Φ) dΦr
MC

]∣

∣

∣

∣

− Feed the Born kinematics to the MC for subsequent shower
with weight ± 1, same sign as B̄

M C

(ΦB).

• For an H event:

− generate Radiation kinematics with probability |R−RM C |.
− Feed to the MC (with weight ± 1, same sign asR−RM C)
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Issues:

• Must use of the MC kinematic mapping (ΦB , Φr
MC)⇒Φ.

• R−RM C must be non singular: the MC must reproduce exactly the
soft and collinear singularities of the radiation matrix element. (Many
MC are not accurate in the soft limit)

• The cancellation of divergences in the expression of B̄MC is taken care
of in the framework of the subtraction method (cancellation of diver-
gences under the integral sign) so that the integral in B̄MC becomes in
fact convergent.

• Negative weights in the output (not like standard MC’s).
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POWHEG

Positive Weight Hardest Emission Generator

Method to generate the hardest emission first, with NLO accuracy, and
independently of the SMC (P.N. 2004).

• SMC independent; no need of SMC expert; same calculation
can be interfaced to several SMC programs with no extra effort

• SMC inaccuracies in the soft region only affect next-to-hardest
emissions; no matching problems

• As the name says, it generates events with positive weight
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How it works (roughly)

In words: works like a standard Shower MC for the hardest radiation, with
care to maintain higher accuracy.

In a standard MC, the hardest radiation cross section is

dσ = dΦB B(ΦB)



 ∆tI ,t0�
No radiation

+ ∆tI ,t
αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π�
radiation





• tI is the maximum hardness allowed initially

• ∆tI ,t in the no-radiation probability with hardness > t

SMC algorithm reconstructs from Born kinematics ΦB and radiation variables
t, z, φ, the full radiation phase space Φ (momentum reshuffling)
We say that ΦB is the underlying Born configuration of Φ according to
the mapping defined by the MC algorithm
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Steps to go NLO:

(ΦB, t, z, φ)⇔Φ � (ΦB, Φr)⇔Φ, dΦ = dΦB dΦr

B(ΦB) � B̄(ΦB)= B(ΦB)+





 V (ΦB)
�INFIN ITE

+

∫

R(ΦB, Φr) dΦr

�INFIN ITE




�
FINITE !

αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π
� R(ΦB, Φr)

B(ΦB)
dΦrad

POWHEG cross section:

dσ = dΦBB̄(ΦB)

[

∆t0
+∆t

R(Φ)

B(ΦB)
dΦr

]

, ∆t = exp







−

∫

θ(tr − t)
R(ΦB, Φr)

B(ΦB)
dΦr�

FIN ITE b ecause of θ function







with tr = kT(ΦB, Φr), the transverse momentum for the radiation.

In the collinear limit, kt
2 must be of the order of t.
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How does it work: dσ = dΦB B̄(ΦB)

[

∆t0 + ∆t
R(Φ)

B(ΦB)
dΦr

]

,

For small kT , the factorization theorem yields

R(Φ)

B(ΦB)
dΦrad ≈

αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π
and

B̄ ≈B × (1 +O(αs))

Thus: all features of SMC’s are preserved at small kT .
For large kT , ∆→ 1,

dσ = B̄ × R

B
≈R× (1 +O(αs)),

so large kt accuracy is preserved. Integrating in dΦr at fixed ΦB

∫

δ(ΦB − Φ̄B)dσ = B̄(Φ̄B)

So NLO accuracy is preserved for inclusive quantities.
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Example of mapping Φ⇔ (ΦB, Φr): Z pair production

ΦB variables: choose Mzz, Yzz and θ, where

• Mzz: invariant mass of the Z Z pair

• Yzz: rapidity of Z Z pair

• θ: go in the (longitudinally) boosted frame where Yzz = 0.
go to the Z Z rest frame with a transverse boost
In this frame θ is the angle of a Z to the longitudinal direction.

Φr variables:

• x = Mzz/s, (s is the invariant mass of the incoming parton system)
x→ 1 is the soft limit

• y: cosine of the angle of the radiated parton to the beam direction
in the partonic CM frame.

• φ: radiation azimuth.
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Few tricks
Both in MC@NLO and POWHEG, integrals of the form

B̄(ΦB) = B(ΦB) +

[

V (ΦB)
�INFIN ITE

+
∫

R(ΦB, Φr) dΦr

�INFINITE
]

�
FIN ITE !

are expressed within the subtraction method as

B̄(ΦB) = B(ΦB)+ VSV(ΦB) +

∫

dΦr [R(ΦB, Φr)−C(ΦB, Φr)]

Needs one Φr integrations for each Φ point!. To overcome this, we write

B̃(ΦB, Φr)=
B(ΦB) + V (ΦB)

∫

dΦr
+ R(ΦB, Φr)−C(ΦB, Φr) , B̄(ΦB)=

∫

B̃(ΦB, Φr)dΦr .

so that

B̄(ΦBΦ) =

∫

B̃(ΦBΦ, Φr)dΦr .

Use standard procedures (SPRING-BASES, Kawabata; MINT, P.N.)
to generate unweighted events for B̃(Φ̄, Φr)dΦrdΦ̄,
discard Φr (same as integrating over it!).

29



Radiation in POWHEG: ∆(Φ
B
, pT) = exp

[

−

∫

R(ΦB, Φr)

B(ΦB)
θ(kT(Φ

B
, Φr)− pT)dΦr

]

,

Look for an upper bounding function;

R(ΦB, Φr)

B(ΦB)
≤U(Φ)= N

α(kT)

(1− x)(1− y2)

Generate x, y according to

exp

[

−
∫

U(ΦB)θ(kT(ΦB, Φr)− pT)dΦr

]

accept the event with a probability

R(ΦB, Φr)

B(ΦB)U(ΦB)
.

If the event is rejected generate a new one for smaller pT , and so on
(Veto method)
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POWHEG: Interfacing to SMC’s

For a pT ordered SMC, nothing else needs to be done.
Use the standard Les Houches Interface for User’s Processes (LHI):
put partonic event generated by POWHEG on the LHI;
Run the SMC in the LHI mode.
The LHI provides a facility to pass the pT of the event to the SMC (SCALUP).
As far as the hardest emission is concerned, POWHEG can reach:

• NLO accuracy of (integrated) shape variables

• Collinear, double-log, soft (large Nc) accuracy of the Sudakov FF.
(In fact, corrections that exponentiates are obviously OK)

As far as subsequent (less hard) emissions, the output has the accuracy of
the SMC one is using.
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Status of POWHEG
Up to now, the following processes have been implemented in POWHEG:

• hh→ZZ (Ridolfi, P.N., 2006)

• e+e−→ hadrons, (Latunde-Dada,Gieseke,Webber, 2006),
e+e−→ tt̄ , including top decays at NLO (Latunde-Dada,2008),

• hh→ QQ̄ (Frixione, Ridolfi, P.N., 2007)

• hh→Z/W (Alioli, Oleari, Re, P.N., 2008; )
(Hamilton,Richardson,Tully, 2008;)

• hh→H (gluon fusion) (Alioli, Oleari, Re, P.N., 2008; Herwig++)

• hh→H , hh→HZ/W (Hamilton,Richardson,Tully, 2009;)

• hh→ t + X (single top) NEW (Alioli, Oleari, Re, P.N., 2009)

• hh→Z + jet, Very preliminary (Alioli, Oleari, Re, P.N., 2009)

• The POWHEG BOX, Very preliminary, (Alioli, Oleari, Re, P.N., 2009)
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In practice

MC@NLO: Code and manuals at

http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO/

1 program for all processes

POWHEG: Codes and manuals in

http://moby.mib.infn.it/~nason/POWHEG

Examples are provide to link POWHEG to HERWIG or PYTHIA,

or to generate a Les Houches Event File to be fed

later to a SMC for showering.

1 program for each process

In the HERWIG++ code there are few independent implementations of MC@NLO
and POWHEG processes
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Examples: Z production
HERWIG alone fails ar large pT ;
NLO alone fails at small pT ;
MC@NLO and POWHEG work
in both regions;
Notice:
HERWIG with ME corrections
or any ME program, give the
same NLO shape at large pT

However: Normalization around
small pT region is incorrect
(i.e. only LO).

The essence of the improvement with respect to standard shower and ME
matched programs is summarized in this plot.
Be careful with the misleading language: Z at LO O(1), NLO O(αs);
At O(1) there is no Z transverse momentum. Thus, the pT distribution pT > 0
is of O(αs), i.e. has leading order accuracy!
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NLO+PS compared with ME programs: ALPGEN and MC@NLO in tt̄ production

expect:
• Disadvantage: worse normalization (no NLO)

• Advantage: better high jet multiplicities (exact ME)

(Mangano, Moretti,Piccinini,Treccani, Nov.06)

ALPGEN:
K = 1.51

MC@NLO:
generated
by shower
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PYTHIA ME vs. POWHEG

For 2→ 1 processes (W/Z and Higgs production), PYTHIA ME corrections

are very similar to POWHEG; it implements the formula

dσ = dΦB B(ΦB)�
B̄ in POWHEG

[

∆t0
+∆t

R(Φ)

B(ΦB)
dΦr

]

, ∆t = exp

[

−

∫

θ(tr − t)
R(ΦB, Φr)

B(ΦB)
dΦr

]

Dashes: PYTHIA X 1.172, Solid: POWHEG
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Different shape in yZ distribution understood as NLO effect
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Comparisons of POWHEG+HERWIG vs. MC@NLO
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Z pair production
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Remarkable agreement for most quantities;
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POWHEG and MC@NLO comparison:
Top pair production

Good agreement for all observable considered
(differences can be ascribed to different treatment of higher order terms)
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Bottom pair production

• Very good agreement For large scales (ZZ, tt̄ production)

• Differences at small scales (bb̄ at the Tevatron)

• POWHEG more reliable in extreme cases like bb̄ , cc̄ at LHC

(yields positive results, MC@NLO has problems with negative weights)
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Z production: POWHEG+HERWIG vs. MC@NLO

Small differences in high and low pT region
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Z production: rapidity of hardest jet (TEVATRON)

POWHEG+HERWIG

MC@NLO

POWHEG+PYTHIA

PYTHIA
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Dip in central region in MC@NLO also in tt̄ and ZZ

POWHEG+HERWIG

MC@NLO

POWHEG+HERWIG

MC@NLO
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ALPGEN and tt̄ + jet at NLO vs. MC@NLO

yjet

43210−1−2−3−4

2.0

1.5

1.0

0.5

K = NLO/LO
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√
s = 1.96TeV

pp̄ → tt̄ + jet + X

(

dσ
dyjet

)

[fb]
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1

POWHEG distribution as in ALPGEN (Mangano,Moretti,Piccinini,Treccani,Nov.06)
and in tt̄ + jet at NLO (Dittmaier, Uwer, Weinzierl) : no dip present.
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Higgs boson via gluon fusion at LHC
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Higgs boson via gluon fusion at LHC
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POWHEG vs. NNLO vs. NNLL

dσ = B̄(ΦB)dΦB

{

∆(ΦB, pT
m in) + ∆(ΦB, pT )

R(ΦB, Φr)

B(ΦB)
dΦr

}

≈
B̄(ΦB)

B(ΦB)
R(ΦB, Φr)dΦr = {1+O(αs)}R(Φ)dΦ

Better agreement with NNLO this way.
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Jet rapidity in h production

Dip in MC@NLO inerithed from even deeper dip in HERWIG

(MC@NLO tries to fill dead regions in HERWIG, a mismatch remains).
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Gets worse for larger ET cuts:

Questions:

Why MC@NLO has a dip in the hardest jet rapidity?

Why POWHEG has no dip? Is that because of the hardest pT spectrum?
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Hard pT spectrum in POWHEG
We understand the cause; we keep it because yields results closer to NNLO;
There is enough flexibility to get rid of it, if one wants!
Go back to the POWHEG cross section:

dσ = B̄(ΦB)

[

∆t0
+ ∆t

R(Φ)

B(ΦB)
dΦr

]

, ∆t = exp

[

−

∫

θ(tr − t)
R(ΦB, Φr)

B(ΦB)
dΦr

]

Break R = Rs + Rf, with Rf finite in collinear and soft limit, define

dσ ′ = B̄
s
(ΦB)

[

∆t0

s + ∆t
s Rs(Φ)

B(ΦB)
dΦr

]

+ Rf(Φ)dΦ

with:

∆t
s = exp

[

−

∫

θ(tr − t)
Rs(ΦB, Φr)

B(ΦB)
dΦr

]

.

Easy to prove that: dσ ′ is equivalent to dσ.
In other words, the part of the real cross section that is treated with the
Shower technique can be varied.
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Rs = R
h2

kT
2 + h2

Rf = R
kT

2

kT
2 + h2

Agrees with NLO
at high pT .
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No new features (dips and the like) arise in the other distributions:

So: high kT cross section and dips are unrelated issues.
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Why is there a dip in MC@NLO?

Write the MC@NLO hardest jet cross section in the POWHEG language;
Hardest emission (P.N., 2004) can be written as

dσ = B̄
HW (ΦB)dΦB�

S event







∆t0
HW + ∆t

HW RHW (Φ)

B(ΦB)
dΦr

HW�
HERW IG shower







+

[

R(Φ)−RHW (Φ)�
H event

]

dΦ

B̄
HW (ΦB) = B(ΦB)+







V (ΦB)�
infinite

+

∫

RHW (ΦB, Φr) dΦr�
infin ite





�
fin ite

(Imagine that soft and collinear singularities in RHW are regulated as in V !).
Like POWHEG with Rs = RHW . But now Rf = R−RHW can be negative.
This formula illustrates why MC@NLO and POWHEG are equivalent at NLO.
But differences can arise at NNLO ...
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For large kT :

dσ =

[

B̄HW(ΦB)

B(ΦB)
RHW(Φ)+ R(Φ)−RHW(Φ)

]

dΦB dΦr
HW

= R(Φ)dΦ�
no dip

+

(

B̄HW(ΦB)

B(ΦB)
− 1

)�
O(αs), but large for Higgs

RHW(Φ)�
Pure Herwig dip

dΦ

So: a contribution with a dip is added to the exact NLO result;

The contribution is O(αsR), i.e. NNLO!

Can we test this hypothesis? Replace B̄HW(Φn)⇒B(Φn) in MC@NLO!

the dip should disappear ...
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MC@NLO with BHWreplaced by B

No visible dip is present! (on the right track, more studies needed cd Does...)
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Detailed study of the problem also by Hamilton,Richardson,Tully, 2009

1x1/s
_

max
1

y

- 1

shower a

shower b

Herwig++ dead zone

[ LHC mH=115 GeV ]

1x1/s
_

max
1

y

- 1

shower a

shower b

Herwig dead zone overlap

[ LHC mH=115 GeV ]

Both HERWIG and HERWIG++ have a dead radiation region corresponding
to central rapidity and high energy
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Single Top
Both initial state and final state radiation is present;

Born Initial state radiation final state radiation

The separation of the different singular regions is based upon the general
formulation of POWHEG given in Frixione, Oleari, P.N. 2007

62



Flavour and singularities separation
There are several allowed flavour structures in the n body process.
A flavour structure is a flavour assignment to the incoming and outgoing
partons. B and V contributions are labelled by the flavour structure index fb.

There are several allowed flavour structures in the n + 1 body process.
Thus R is labelled by a flavour structure index fr.
Each component Rfr

has several singularity regions. We thus write

R =
∑

αr

Rαr

where each Rαr has a specific flavour structure, and is singular in only one
singular region. In FKS one writes

Rαr = R×Sαr
,

∑

αr

Sαr
= 1
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The S factors in the FKS formalism are defined as

Si =
1

Ndi
, Sij =

1

Ndij
h

(

Ei

Ei + Ej

)

,

where N is define so that
∑

αr
Sαr

= 1,

di =
(

s
√

Ei/2)a(1− cos2θi)
b, dij = (EiEj)

a(1− cos θij)
b,

lim
z→0

h(z) = 1, lim
z→1

h(z) = 0, h(z)+ h(1− z)= 1.

For example:

h(z)=
(1− z)c

zc + (1− z)c

So, the Si factors single out the region where parton i is collinear to either
initial state line, or is soft, while Sij single out the region where parton i

is collinear to parton j or is soft.
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The underlying Born
This is a basic concept in the POWHEG formalism;
To each region αr we associate an underlying Born flavour configuration fb,
obtained as follows:

• If the singular region is associated to a parton becoming soft, then
the parton must be a gluon, and it is simply removed to get the
underlying Born configuration

• If the region is associated to two parton becoming collinear, then,
in order for the region to be singular, the two partons must come
from the splitting of another parton. The two partons are removed,
and are replaced by the single parent parton with the appropriate
flavour

Notice that in a shower Monte Carlo one first generates the Born process
(i.e. the underlying Born configuration) and then lets one initial or final line
undergo collinear splitting. Here we look at each singular region of the real
matrix element, and ask from which underlyng Born process it could have
been produced via a shower.
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The underlying Born kinematics
To each kinematic configuration for the full radiation phase space Φ, one
associates an underlying Born kinematics ΦB and a set of radiation variables
Φr = (y, z, φ). For initial state radiation ΦB is obtained by going with a
longitudinal boost to the frame where the system recoiling against radiation
has zero longitudinal momentum. In this frame one boosts the recoil system
in the transverse direction, so that its transverse momentum becomes zero

The radiation variables are y = cos θ, θ being the angle between the radiated
parton and the positive rapidity incoming parton, ξ = 2E/ s

√
, where E

is the energy of the radiated parton, and φ is its azimuth.
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For final state radiation, the splitting partons are merged by summing their
3-momenta in the partonic CM frame. The 3-momentum is scaled, and the
recoil system is boosted so that momentum and energy are conserved.

The radiation variables are y = cos θ, θ being the angle between the radiated
partons, ξ = 2Ei/ s

√
, φ is the azimuth of the ij plane relative to kKi + kKj.

(This differs from FKS kinematics , where φ is relative to kKj).
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The B̄ function carries a flavour structure index, and is given by

B̄ fb(ΦB) = [B(ΦB)+ V (ΦB)]fb
+

∑

αr∈{αr|fb}

[dΦr R(Φ)]αr

The Rαr
appearing here have singularities regulated by + prescriptions in the

FKS framework.
we have

• {αr |fb} is the set of all singular regions having the underlying Born
configuration with flavour structure fb.

• [� ]αr
means that everything inside is relative to the αr singular term:

thus R is Rαr
, the parametrization (ΦB , Φr) is the one appropriate to

the αr singular region
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Sudakov FF also carries an fb index:

∆fb(Φn, pT) = exp







−
∑

αr∈{αr|fb}

∫

[dΦr R(Φn, Φr)θ(kT − pT)]αr

Bfb(Φn)







or

∆fb(Φn, pT)=
∏

αr∈{αr|fb}

exp

{

−
∑

∫

[dΦr R(Φn, Φr)θ(kT − pT)]αr

Bfb(Φn)

}

The Sudakov form factor is a product of elementary Sudakov form factors
associated with each radiation region. Technically, one generates radiation
by generating a kT with each elementary form factor, and choosing the one
with the largest kT at the end.
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Double logs and angular ordered Showers

We have discussed MC+NLO assuming that the hardest radiation is the
first one. This is the case only in dipole shower programs (ARIADNE,
newer PYTHIA versions). In virtuality ordered (old PYTHIA) or angular
ordered showers the hardest event may not be the first.
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Accuracy of SMC’s

Soft divergences and double log region

z→ 1 (z→ 0) region problematic: for z→ 1: Pqq, Pgg ∝ 1

1− z

Choice of hardness variable makes a difference

virtuality: t ≡ E2z(1− z) θ2
�1−cos θ

pT
2 : t ≡ E2z2(1− z)2 θ2

angle: t ≡ E2 θ2

∫

dt

t

∫

t
√

/E

1− t
√

/E dz

1− z�
v irtua lity:z(1−z)>t/E2

≈
log2 t

E2

4
;

∫

dt

t

∫

t/E2

1−t/E2
dz

1− z�
pT
2 :z2(1−z)2>t/E

≈
log2 t

E2

2
;

∫

dt

t

∫

0

1 dz

1− z�
ang le

≈ log t log Λ

Sizeable difference in double log structure!
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Angular ordering is the correct choice (Mueller 1981)

dθ

θ

αs(pT
2 )

2π
P (z)dz

θ1 > θ2 > θ3�
pT
2 = E2z2(1− z)2 θ2

αs(pT
2 ) for a correct treatment of charge renormalization in soft region.

∆i(t, t
′)= exp



 −
∫

t′

t dt

t

∫

t0
t

√

1−
t0
t

√

dz
αs(pT

2 )

2π

∑

(jk)

Pi,jk(z)





≈ exp



 − ci

4πb0

{

log
t

Λ2
log

log
t

Λ2

log
t0

Λ2

− log
t

t0

}

t′

t


 (cq = CF , cg = 2CA)

Sudakov damping stronger than any power of t.
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With virtuality ordering:
Soft emissions give small virtuality.
At end of shower, large amount of
unrestricted (all angles) soft radiation

But soft gluons emitted at large angles from final state partons add coherently!

large angle, high energy: already ordered in angle
large angle, small energy: should be reordered by angle;

Thus: order in angle
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Look at the example:

Angular ordering accounts

for soft gluon interference.

Intensity for photon jets = 0

Intensity for gluon jets = CA

instead of 2CF + CA

Consistent with a boosted jet pair, in the case of a photon jet.
In angular ordered SMC large angle soft emission is generated first.
Hardest emission (i.e. highest pT) happens later.
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Is it important?

• Eccessive multiplicity growth in virtuality ordered MC

• Angular ordered MC’s (HERWIG) agree with mutliplicity data
in e+e− annihilation

• Agreement of PYTHIA with multiplicity data was achieved by
superimposing an angular ordered veto over the virtuality ordered
shower. This amounts to take the interference as being totally
distructive. No major differences between PYTHIA and HERWIG

were seen because of this reason.
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MC@NLO and HERWIG

In this case

dσ = B̄
M C(ΦB)dΦB�

S event







∆t0

M C + ∆t
M C RM C(Φ)

B(ΦB)
dΦr

M C�
MC shower







+

[

R(Φ)−RM C(Φ)�
H event

]

dΦ.

The S events should already be treated correctly by the MC; the net effect of
the shower development in HERWIG is to generate the hardest radiation
according to the above formula (P.N. 2004).
There are however 2→ 2 processes in HERWIG that may need a truncated
shower to consistently treat colour connections.

The H event may need truncated shower, as any ME result interfaced to the
angular ordered shower; however, being not singular, the region that needs the
truncated shower is power suppressed by the phase space.

83



Interfacing POWHEG with angular ordered SMC’s

• Generate event with harderst emission

• Generate all subsequent emissions with a pT veto
equal to the hardest emission pT

• Pair up the partons that are nearest in pT

• Generate an angular ordered shower associated with the paired parton,
stopping at the angle of the paired partons:
Truncated shower, (P.N., 2004)

• Generate all subsequent (vetoed) showers
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Example of truncated shower: e+e−

Nearby partons: 1,2

Truncated shower: 1,2 pair,

from maximum angle to θ

1 and 2 shower from θ to cutoff

3 showers from maximum to cutoff

The truncated shower reintroduces coherent soft radiation from 1,2 at
angles larger than θ (Angular ordered SMC’s generate those earlier).

Truncated shower are generally needed for interfacing ME calculations
with angular ordered MC;
They are not a specific problem of POWHEG.
They are now implemented in HERWIG++

85



Issue of truncated showers

Truncated shower are generally needed in angular ordered SMC’s

• Every time the shower is initiated by a relatively complex
matrix element a truncated shower is needed

• CKKW mocks the effect of truncated shower with a trick
(but it misses the correct colour flow)
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Consider e+e−→ q q̄ g.
Assume θ1 small. Consider gluon emission
with angle θ ≫ θ1, θ≪ θ2.
Coherence requires that the emission strength
is CF (gluon and quark coherently)

In HERWIG: initial angle for gluon radiation is θ1 or θ2 with a 50% probability.
Thus (in the above region) strength is CA/2≈CF (but only in the average!!)

In CKKW: radiation from gluon restricted to θ < θ1, quark radiates with angle
up to θ2. Thus only the quark radiates in the above region, with strength CF .
However, the colour connection is incorrect! Large colour gap in CKKW!

So: coherent showers are always needed when doing ME-Shower matching
with angular ordered showers.
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Implementation of truncated showers: HERWIG++

Method: once the POWHEG radiation is generated, if it does not fall in the
HERWIG dead zone, find the born level kinematics and the HERWIG shower
parameters θ0, z0 and φ0 that would have generated the same
kinematic configuration. Then run the shower on that Born kinematics,
veto on its pT , stop it when an angle greater than θ0 is generated.
At this stage, replace the splitting variables with θ0, z, φ.

Very small dip in rapidity observed for LHC energies; is it related to
the different behaviour adopted in the dead region?
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Towards automation: the POWHEG BOX

The MIB (Milano-Bicocca) group (Alioli, Oleari, Re, P.N.) is working on
an automatic implementation of POWHEG for generic NLO processes.

This framework is being tested in the process hh→Z + 1jet.

90



The POWHEG BOX

Build a computer code framework, such that, given the Born cross section, the
finite part of the virtual corrections, and the real graph cross section, one
builds immediately a POWHEG generator. More precisely, the user must supply:

• The Born phase space

• The lists of Born and Real processes (i.e. u s̄→W+c c̄, etc.)

• The Born squared amplitudes B = |M|2, Bij , Bj,µj,µj
′, for all rele-

vant partonic processes; Bij is the colour ordered Born amplitude
squared, Bj,µν is the spin correlated amplitude, where j runs over all
external gluons in the amplitude. All these amplitudes are common
ingredient of an NLO calculation.

• The Real squared amplitude, for all relevant partonic processes. This
may also be obtained by interfacing the program to MADGRAPH.

• The finite part of the virtual amplitude contribution, for all relevant par-
tonic processes.
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Strategy
Use the FKS framework according to the general formulation of POWHEG given
in (Frixione, Oleari, P.N. 2007), hiding all FKS implementation details.
In other words, we use FKS, but the user needs not to understand it.
(Attempts to use the popular Catani-Seymour method
have turned out to be too cumbersome).
It includes:

• The phase space for ISR and FSR, according to FNO2006.

• The combinatorics, the calculation of all Rα, the soft and coll. limits

• The calculation of B̃

• The calculation of the upper bounds for the generation of radiation

• The generation of radiation

• Writing the event to the Les Houches interface

It works! Lots of testing needed now ...
Byproduct: generic NLO implementation using the FKS method
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Case study: Z + jet production
Get virtual matrix elements from MCFM;
Compare first NLO predictions obtained with MCFM and the POWHEG BOX

Virtual corrections are the same, but subtraction terms, soft and collinear
remnants are all different; non trivial test of setup;
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Everything seems to work ...
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Now compare POWHEG+HERWIG with NLO (red)
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Distributions sensitive to more than
two jet show noticeably different.
All others in agreement with NLO
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Conclusions

• NLO accuracy with Shower MC has become a reality in recent years.

• Two methods have provided usable implementations for collider physics
MC@NLO and POWHEG.

• Agreement and differences among the two method are relatively
well understood

• A path to full automation of POWHEG implementations of arbitrary
NLO calculation is open

• Even so, we are just at the beginning: many interesting problems
remain to be addressed, and it is likely that further theoretical
progress is still possible in this framework
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Caveats in POWHEG
Born zeros

• Singularities in B

• Zeros in B

Both cause problems, but they are easily fixed.
For example, zeros in B: further separate

Rαr
=

kT
2

kT
2 + B

Rαr
+

B

kT
2 + B

Rαr

The first term in non-singular (can be generated directly without Sudakov),
while in the second term the zero in B cancels in the Sudakov exponent.
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Accuracy of the Sudakov Form Factor
POWHEG’s Sudakov FF has the form (with c≈ 1)

∆t = exp

[

−
∫

t

Q2

dkT
2

kT
2

αS(c kT
2 )

π

{

A log
M2

kT
2

+ B

}

]

We know that the NLL Sudakov form factor has the form

∆t
NLL = exp

[

−
∫

t

Q2

dkT
2

kT
2

αS(kT
2 )

π

{(

A1 + A2
αs(kT

2 )

π

)

log
M2

kT
2

+ B

}

]

provided the colour structure of the process is sufficiently simple
(6 3 coloured legs). Can use this to fix c in POWHEG’s Sudakov FF.
(Suggested in (Catani, Webber, Marchesini, 1991) for HERWIG)
> 4 coloured legs: exponentiation only holds in LL,
or LL + (NLL large Nc) if planar colour structures are suitably separated
Summarizing:
POWHEG Sudakov is: always LL accurate,
NLL accurate for 6 3 coloured legs, NLL accurate in leading Nc in all cases.
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