
Supersymmetry
in a nutshell



Outline
Goal: a self-contained overview of the main motivations, concepts, and 
how the pieces fit together for various applications

No space for detailed calculations (as with anything, real grasp of the 
subject will require working through these) - will give references

Focus more on concepts, less on models, constraints, etc

  

  1. What is (super)symmetry?

  2. SUSY in quantum field theory and its consequences

  3. Spontaneous SUSY breaking, goldstino/gravitino. Soft breaking.

  4. MSSM

  5. Theoretical and experimental constraints



Symmetry in physics 
Def.: A symmetry is some operation that
one can do to a thing such that it still
looks the same afterwards (H Weyl)

In physics we look at one of two “things”:

(i) The equations of motion (classical or quantum). SUSY in particle 
physics may or may not be a symmetry of the EOM.

(ii) The ground state of a system (in field theory, this is the vacuum). Even 
if the EOM are symmetric, the ground state may not be: “Spontaneously 
broken” or (more correctly) “hidden” symmetry. This is an interesting case, 
because the dynamics is still constrained by symmetry. 

In particular, there is a motivation to look for particle models with 
spontaneously broken supersymmetry - symmetry protects the weak scale,  
while allowing for unsymmetric ground state properties, such as 

Symmetry

mt 6= mt̃

Classical

kinetic energy

T =
m

2
ẋ2

potential energy
V = 0

Lagrangian

L = T � V =
m

2
ẋ2

does not depend on x, only on ẋ. Canonical momentum

p =
@L

@x

Euler-Lagrange
d

dt
p =

@L

@x
= 0

explicitly
mẍ = 0

which is invariant under x ! x + a (a const). So conservation of (linear)
momentum follows from translation invariance of the Lagrangian and the
equations of motion.

Quantum

Hamiltonian

Ĥ =
1

2m
p̂2

Momentum generates translations:

|x+ ai = exp
✓
� i

h̄
ap̂

◆
|xi

[Ĥ, p̂] = 0 () ih̄
d

dt
exp

✓
� i

h̄
ap̂

◆
| i = Ĥ exp

✓
� i

h̄
ap̂

◆
| i (1)

ie the SE is (translation) invariant

[Ĥ, p̂] = 0 () d

dt
h |p̂| i = 0 (2)

ie momentum is conserved
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Symmetry: classical and quantum
Ex. classical free particle (nonrelativistic)

                               kinetic energy

                               (no) potential energy

                               does not depend on x, only on dx/dt

                               canonical momentum
  
                               Euler-Lagrange: momentum conserved!

                               EOM (and L) unchanged under translation x -> x+a

    

The continuous symmetry of the Lagrangian and the equations of motion 
(translation invariance) implies a conservation law (of momentum)
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ẋ

2

does not depend on x, only on ẋ. Canonical momentum
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ẋ

2

does not depend on x, only on ẋ. Canonical momentum
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Symmetry: classical and quantum
Quantum free particle (nonrelativistic)

                                            Hamiltonian

                                            momentum generates translations in QM

                                                                            Schroedinger eq. invariant

                                                                                 if and only if
                                                                            momentum is conserved

The continuous symmetry of the Hamiltonian and the (Schroedinger) 
equation of motion (translation invariance) implies a conservation law (of 
momentum)

One-to-one correspondence between classical and quantum cases
This is general.
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Ĥ =
1

2m
p̂2

Momentum generates translations:

|x+ ai = exp
✓
� i

h̄
ap̂

◆
|xi
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Symmetry in fundamental physics
possible spacetime symmetry operations:

    1) translations

    2) rotations, Lorentz boosts

    3) supersymmetry

    4) conformal symmetry (change of scale; invert-translate-invert)

1), 2) generally assumed to be exact symmetries in particle physics.
3), 4) not manifest symmetries of nature (but could be hidden symmetries)

internal symmetries: 

    isospin, strangeness, baryon number, ...  mostly approximate

gauge symmetries:

    exact: necessary for massless spin-1 particles (Weinberg, Witten)



Supersymmetric quantum mechanics
                                                   (Witten, Nucl.Phys.B184 (1981) 513-554)

1-dimensional wave mechanics with an internal degree of freedom

There are two conserved quantities

which generate continuous symmetries (like with momentum)

Special about them is that they are “square roots” of the Hamiltonian

Immediate consequence: 

These properties carry over to relativistic field theory.
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W is the superpotential, an arbitrary function.
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Relativistic supersymmetry

Relativistic quantum theory means, in practice, relativistic (quantum) field 
theory (or string theory)

The Hamiltonian is part of the momentum 4-vector

hence if there is a relativistic analog of SUSY QM, the supercharges must 
generate momentum, too. NB - will drop hats above operators henceforth.

This actually works with the algebra (Golfand, Likhtman 1971; Wess, 
Zumino 1974)

where        is a 4-component Majorana spinor (operator)

The generators (supercharges) carry spin 1/2 (must, as rhs has spin 1).

In field theory, the supercharges are built out of the fields, and by the spin-
statistics theorem must be fermionic.
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Supermultiplets
Given a boson with mass M at rest (ie E = M), act on it with supercharge:

which is a fermionic, spin-1/2 state.
NB -        cannot all annihilate the bosonic state, as then E = M = 0.

 hence

 
supermultiplets are mass-degenerate!

In summary, super(symmetry)multiplets contain at least two different 
particles with
   (i)   different spin
   (ii)  different statistics
   (iii) equal mass
For example, there should be scalar tops (or spin-1 tops) with M=m_t. Not 
observed !
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An important loophole
We have tacitly assumed that the vacuum is supersymmetric and that 
supersymmetry acts linearly on the fields, such that one-particle states are 
mapped to one-particle states.

If the vacuum is not supersymmetric then this need not be the case (eg a 
SUSY transformation can “take particles from the vacuum” and add them 
to the state, and the symmetry becomes “nonlinearly realised”).

If SUSY is relevant to particle physics, it should be spontaneously broken.



Superspace and superfields
Analogously to representing translations on fields in spacetime, the 
supercharges  can be represented as translation-rotations on an extended 
“superspace” with a fermionic (anticommuting) “coordinate” 

This is just a formal trick, but extremely useful in practice

Fields are replaced by superfields, such as the chiral superfield

 

The action integral can be written as superspace integrals of superfields

Supersymmetry is extremely constraining on the allowed terms. 

Provides very quick route to nonrenormalisation theorems
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= (Ĥ, P̂
x

, P̂
y

, P̂
z

)
µ

is the energy-momentum four-vector (operator)
and I am dropping hats over the operators.

Supermultiplets

Q
↵

|M ; ~p = 0i = |?; ~p = 0;↵i

P 2|?; ~p = 0;↵i = [P 2, Q
↵

]|M ; ~p = 0i+Q
↵

P 2|M ; ~p = 0i = 0+M2Q
↵

|M ; ~p = 0i = M2|?; ~p = 0;↵i

Hence
Q

↵

|M ; ~p = 0i = |M ; ~p = 0;↵i

Superfields

�(x, ✓↵) = A(x) + ✓↵ 
↵

(x) + ✓↵✓
↵

F (x)

2

Superfields

Fermionic coordinate ✓
↵

✓
↵

�(x, ✓
↵

) = A(x) + ✓̄ (x) + (✓̄✓)F (x)

3

scalar field
(creates/destroys

spin 0)

fermion field
(creates/destroys

spin 1/2)

auxiliary field
(spin 0 no kinetic terms)



SUSY Lagrangians
(skipping many steps) one finds that the most general renormalisable 
SUSY gauge theory is obtained as follows:

(1) specify chiral “matter” multiplets in a representation (set of multiplets) of 
the gauge group. These contain spin-1/2 fermions and complex scalars.

(2) add so-called vector superfields containing the gauge fields (spin-1) 
and gauginos (spin-1/2). This is completely fixed by the gauge group.

(3) Specify a third-order polynomial “superpotential” W made out of the 
chiral superfields, but not making use of complex conjugation.

The interaction terms consist of regular gauge interactions, plus
(a) gaugino couplings
(b) Yukawa interactions
(c) scalar self-interactions

(board) [SP Martin, a supersymmetry primer]

j k
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i j

k l

(c)

Figure 3.1: The dimensionless non-gauge interaction vertices in a supersymmetric theory: (a) scalar-
fermion-fermion Yukawa interaction yijk, (b) the complex conjugate interaction yijk, and (c) quartic
scalar interaction yijny∗kln.
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Figure 3.2: Supersymmetric dimensionful couplings: (a) (scalar)3 interaction vertex M∗
iny

jkn and (b)
the conjugate interaction M iny∗jkn, (c) fermion mass term M ij and (d) conjugate fermion mass term

M∗
ij , and (e) scalar squared-mass term M∗

ikM
kj.

(3.2.19), and are shown† in Figures 3.1 and 3.2. Those in Figure 3.1 are all determined by the dimen-
sionless parameters yijk. The Yukawa interaction in Figure 3.1a corresponds to the next-to-last term
in eq. (3.2.19). For each particular Yukawa coupling of φiψjψk with strength yijk, there must be equal
couplings of φjψiψk and φkψiψj, since yijk is completely symmetric under interchange of any two of
its indices as shown in section 3.2. The arrows on the fermion and scalar lines point in the direction
for propagation of φ and ψ and opposite the direction of propagation of φ∗ and ψ†. Thus there is also
a vertex corresponding to the one in Figure 3.1a but with all arrows reversed, corresponding to the
complex conjugate [the last term in eq. (3.2.19)]. It is shown in Figure 3.1b. There is also a dimension-
less coupling for φiφjφ∗kφ∗l, with strength yijny∗kln, as required by supersymmetry [see the last term
in eq. (3.2.18)]. The relationship between the Yukawa interactions in Figures 3.1a,b and the scalar
interaction of Figure 3.1c is exactly of the special type needed to cancel the quadratic divergences
in quantum corrections to scalar masses, as discussed in the Introduction [compare Figure 1.1, and
eq. (1.11)].

Figure 3.2 shows the only interactions corresponding to renormalizable and supersymmetric vertices
with coupling dimensions of [mass] and [mass]2. First, there are (scalar)3 couplings in Figure 3.2a,b,
which are entirely determined by the superpotential mass parameters M ij and Yukawa couplings yijk,
as indicated by the second and third terms in eq. (3.2.18). The propagators of the fermions and scalars
in the theory are constructed in the usual way using the fermion mass M ij and scalar squared mass
M∗

ikM
kj. The fermion mass terms M ij and Mij each lead to a chirality-changing insertion in the

fermion propagator; note the directions of the arrows in Figure 3.2c,d. There is no such arrow-reversal
for a scalar propagator in a theory with exact supersymmetry; as depicted in Figure 3.2e, if one treats
the scalar squared-mass term as an insertion in the propagator, the arrow direction is preserved.

Figure 3.3 shows the gauge interactions in a supersymmetric theory. Figures 3.3a,b,c occur only
when the gauge group is non-Abelian, for example for SU(3)C color and SU(2)L weak isospin in the
MSSM. Figures 3.3a and 3.3b are the interactions of gauge bosons, which derive from the first term in

†Here, the auxiliary fields have been eliminated using their equations of motion (“integrated out”). One can instead
give Feynman rules that include the auxiliary fields, or directly in terms of superfields on superspace, although this is
usually less practical for phenomenological applications.
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Figure 3.3: Supersymmetric gauge interaction vertices.

eq. (3.3.3). In the MSSM these are exactly the same as the well-known QCD gluon and electroweak
gauge boson vertices of the Standard Model. (We do not show the interactions of ghost fields, which
are necessary only for consistent loop amplitudes.) Figures 3.3c,d,e,f are just the standard interactions
between gauge bosons and fermion and scalar fields that must occur in any gauge theory because of the
form of the covariant derivative; they come from eqs. (3.3.5) and (3.4.2)-(3.4.4) inserted in the kinetic
part of the Lagrangian. Figure 3.3c shows the coupling of a gaugino to a gauge boson; the gaugino line
in a Feynman diagram is traditionally drawn as a solid fermion line superimposed on a wavy line. In
Figure 3.3g we have the coupling of a gaugino to a chiral fermion and a complex scalar [the first term
in the second line of eq. (3.4.9)]. One can think of this as the “supersymmetrization” of Figure 3.3e or
3.3f; any of these three vertices may be obtained from any other (up to a factor of

√
2) by replacing two

of the particles by their supersymmetric partners. There is also an interaction in Figure 3.3h which
is just like Figure 3.3g but with all arrows reversed, corresponding to the complex conjugate term in
the Lagrangian [the second term in the second line in eq. (3.4.9)]. Finally in Figure 3.3i we have a
scalar quartic interaction vertex [the last term in eq. (3.4.12)], which is also determined by the gauge
coupling.

The results of this section can be used as a recipe for constructing the supersymmetric interactions
for any model. In the case of the MSSM, we already know the gauge group, particle content and the
gauge transformation properties, so it only remains to decide on the superpotential. This we will do
in section 6.1. However, first we will revisit the structure of supersymmetric Lagrangians in section 4
using the manifestly supersymmetric formalism of superspace and superfields, and then describe the
general form of soft supersymmetry breaking terms in section 5.

4 Superspace and superfields

4.1 Supercoordinates, general superfields, and superspace differentiation and in-
tegration

Supersymmetry can be given a geometric interpretation using superspace, a manifold obtained by
adding four fermionic coordinates to the usual bosonic spacetime coordinates t, x, y, z. Points in su-
perspace are labeled by coordinates:

xµ, θα, θ†α̇. (4.1.1)

Here θα and θ†α̇ are constant complex anticommuting two-component spinors with dimension [mass]−1/2.
In the superspace formulation, the component fields of a supermultiplet are united into a single su-
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The results of this section can be used as a recipe for constructing the supersymmetric interactions
for any model. In the case of the MSSM, we already know the gauge group, particle content and the
gauge transformation properties, so it only remains to decide on the superpotential. This we will do
in section 6.1. However, first we will revisit the structure of supersymmetric Lagrangians in section 4
using the manifestly supersymmetric formalism of superspace and superfields, and then describe the
general form of soft supersymmetry breaking terms in section 5.

4 Superspace and superfields

4.1 Supercoordinates, general superfields, and superspace differentiation and in-
tegration

Supersymmetry can be given a geometric interpretation using superspace, a manifold obtained by
adding four fermionic coordinates to the usual bosonic spacetime coordinates t, x, y, z. Points in su-
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Here θα and θ†α̇ are constant complex anticommuting two-component spinors with dimension [mass]−1/2.
In the superspace formulation, the component fields of a supermultiplet are united into a single su-
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Nonrenormalisation theorems
The quantum corrections are described by a “quantum effective action”. 
For SUSY this means an “effective” superpotential (a general function, not 
a polynomial, of the chiral superfields) and an effective “Kahler function” 
generalising the kinetic term

Nonrenormalisation theorem: The effective superpotential equals the 
original one to all orders in perturbation theory.

The Kahler potential does get quantum correction, but as far as UV 
divergences go all this implies is a so-called wave function (or field) 
renormalisation.

Hence quantum corrections, beta-functions, etc are extremely constrained 
in SUSY. This is what prevents large corrections to the weak scale, in 
particular.



Noether current
In field theory a symmetry implies not just a conserved quantity, but a 
conserved local current

Important role in discussing spontaneous symmetry breaking (Goldstone 
theorem)

gauge group has several distinct factors with different gauge couplings ga. [For instance, in the MSSM
the three factors SU(3)C , SU(2)L and U(1)Y have different gauge couplings g3, g and g′.] Since
V (φ,φ∗) is a sum of squares, it is always greater than or equal to zero for every field configuration. It
is an interesting and unique feature of supersymmetric theories that the scalar potential is completely
determined by the other interactions in the theory. The F -terms are fixed by Yukawa couplings and
fermion mass terms, and the D-terms are fixed by the gauge interactions.

By using Noether’s procedure [see eq. (3.1.17)], one finds the conserved supercurrent

Jµ
α = (σνσµψi)α∇νφ

∗i + i(σµψ†i)αW
∗
i

− 1

2
√
2
(σνσρσµλ†a)α F

a
νρ +

i√
2
gaφ

∗T aφ (σµλ†a)α, (3.4.13)

generalizing the expression given in eq. (3.1.18) for the Wess-Zumino model. This result will be useful
when we discuss certain aspects of spontaneous supersymmetry breaking in section 7.5.

3.5 Summary: How to build a supersymmetric model

In a renormalizable supersymmetric field theory, the interactions and masses of all particles are deter-
mined just by their gauge transformation properties and by the superpotential W . By construction,
we found that W had to be a holomorphic function of the complex scalar fields φi, which are always
defined to transform under supersymmetry into left-handed Weyl fermions. In an equivalent language,
to be developed in section 4, W is said to be a function of chiral superfields [48]. A superfield is a
single object that contains as components all of the bosonic, fermionic, and auxiliary fields within the
corresponding supermultiplet, for example Φi ⊃ (φi,ψi, Fi). (This is analogous to the way in which
one often describes a weak isospin doublet or a color triplet by a multicomponent field.) The gauge
quantum numbers and the mass dimension of a chiral superfield are the same as that of its scalar
component. In the superfield formulation, one writes instead of eq. (3.2.15)

W = LiΦi +
1

2
M ijΦiΦj +

1

6
yijkΦiΦjΦk, (3.5.1)

which implies exactly the same physics. The derivation of all of our preceding results can be obtained
somewhat more elegantly using superfield methods, which have the advantage of making invariance
under supersymmetry transformations manifest by defining the Lagrangian in terms of integrals over
a “superspace” with fermionic as well as ordinary commuting coordinates. We have purposefully
avoided this extra layer of notation so far, in favor of the more pedestrian, but more familiar and
accessible, component field approach. The latter is at least more appropriate for making contact with
phenomenology in a universe with supersymmetry breaking. The specification of the superpotential is
really just a code for the terms that it implies in the Lagrangian, so the reader may feel free to think of
the superpotential either as a function of the scalar fields φi or as the same function of the superfields
Φi.

Given the supermultiplet content of the theory, the form of the superpotential is restricted by the
requirement of gauge invariance [see eq. (3.4.10)]. In any given theory, only a subset of the parameters
Li, M ij, and yijk are allowed to be non-zero. The parameter Li is only allowed if Φi is a gauge singlet.
(There are no such chiral supermultiplets in the MSSM with the minimal field content.) The entries
of the mass matrix M ij can only be non-zero for i and j such that the supermultiplets Φi and Φj

transform under the gauge group in representations that are conjugates of each other. (In the MSSM
there is only one such term, as we will see.) Likewise, the Yukawa couplings yijk can only be non-zero
when Φi, Φj, and Φk transform in representations that can combine to form a singlet.

The interactions implied by the superpotential eq. (3.5.1) (with Li = 0) were listed in eqs. (3.2.18),
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Spontaneous supersymmetry breaking
(Unbroken) supersymmetry makes predictions (degenerate multiplets) that 
appear obviously inconsistent with experiment.

Let us investigate the consequences of an unsymmetric vacuum

  vacuum unsymmetric <-> not annihilated by supercharge <-> vacuum 
energy > 0

If the vacuum is not annihilated by the supercharge Q, then the new state 
is a spin-1/2 particle. One can show it is massless: “goldstino”

One can show that SUSY is broken if an auxiliary field (F or D) obtains a 
vacuum expectation value.



Goldstino and gravitino
If coupled to gravity (which we know to exist), supersymmetry must be 
made a local symmetry: supergravity.

Superpartner of the graviton: gravitino

In broken SUSY, the gravitino “eats” the goldstino and becomes a massive 
spin-3/2 particle - also called the “super-Higgs” mechanism.

Note that there is, generally, no “Higgs fermion”
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Most models look like this:

SUSY breaking can be mediated [dominantly] by:
- gauge interactions (some fields in breaking sector are
   charged under SM gauge group): gauge mediation
- pure gravity interactions: anomaly mediation
- generic nonrenormalizable interactions 

SUSY-breaking sector
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SUSY breaking scenarios
(visible sector)

hidden sector with mediation through messengers:

      

dynamical SUSY breaking

soft SUSY breaking

(board)
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The MSSM
Multiplets

superpotential and R-parity

soft-breaking terms

Higgs mass

Planck-scale mediation

gauge mediation

(board)



• The MSSM strongly hints at grand unification:

Circumstantial evidence for SUSY



Relevant energy scales

hierarchy
MW ≪ MPl~Mseesaw~MGUT

stabilized

improved unification 
of couplings

EW symmetry breaking is SUSY breaking effect
  SUSY nonrenormalization theorem forces this to be
  either tree level or nonperturbative =  

 (thermal relic) dark matter candidate, baryogenesis, strings, ...

disfavoured
(mass sum rules etc)

hierarchy generated, 
not only stabilized

O(e−c/g2(µ)) = O((Λ/µ)c
′

)

MPl      MGUT         Mmess          Λ               Msparticle ~ MEW       

Msparticle, MEW  = O(Λ2/Mmess)



Planck-scale physics (quantum black holes, strings, ...) should 
generate effective higher-dimensional operators coupling 
MSSM and breaking sector:

After X → FX θ2, these give rise to scalar masses and trilinears:

Flavour structure from Planck-scale physics: anything goes

Ad hoc assumption (“msugra”):                    ,
➯ universal sfermion masses, special A-terms

not stable under radiative corrections (-> RGE running) but 
consistent with bounds from flavour physics

kij ∝ δij ωijk ∝ Yijk

m2

ij = kij |FX |2/M2

Pl

Aijk = YijkFX/MPl

[Msparticle = |FX |/MPl]

fmed(Φi, Xj) ⊃
kij

M2

Pl

(Φ†
i ,Φj)(X

†X) Wmed(Φi, Xj) ⊃
ωijk

MPl
ΦiΦjΦkX

[for reviews, see Brignole et al hep-ph/9707209; Chung et al, Phys Rept 407 (2005)]

planck-scale mediation



If SUSY-breaking sector fully neutral under SM gauge group 
and if nonrenormalizable direct couplings can be neglected, 
leading contribution is due to (super)gravity
- determined in terms of RGE functions - UV insensitive

- possible realization: moderate-size extra dim. (r MPl ~ 102)

- flavour bounds ok (suppression by small Yukawa couplings)

- tachyonic slepton spectrum from pure anomaly mediation

bulk
(only gravity)

visible fields 
on one brane

breaking sector 
on “sequestered” 
brane

[Randall, Sundrum 98; Giudice, Luty, Murayama, Rattazzi 98]

mgaugino = −

β(g)

2g2
m3/2 m2

sfermion,ij =
1

2

(

β(g)
∂γij

∂g
+ µ

dY

dµ

∂γij

∂Y

)

|m3/2|
2 ...

anomaly mediation



eg comprehensive study of FCNC     arXiv:0902.4880 [hep-ph]
[Allanach, Hiller, Jones, Slavich]

small off-diagonal δ´s
origin: CKM mixing 
angles (MFV)

δdXYδuXY

BR(B→τν) /
    BR(B→τν)SM

BR(B→XSγ) 

anomaly mediation



general definition: breaking sector decouples as gauge 
couplings → 0  [must augment to get µ, Bµ]

- masses calculable in terms
of 3 two-point functions [blobs]
flavour-blind up to higher
orders (via Yukawas)

- A-terms small (higher orders)

Flavour bounds ok (Yukawa & CKM suppression:
 “minimal flavour violation”)

One mass relation only  -  more predictivity in concrete weakly-
coupled models such as minimal gauge mediation

[Meade, Seiberg, Shih 08]

[Giudice, Rattazzi (review) 98]
[Dine, Nelson 93; Dine et al 94-95]

MSSM gauge 
couplings

gauge mediation



SuperCKM basis: Superfield basis that diagonalizes Yukawas

Squark mass matrices are still 6x6 with independent flavour 
structure:

similar for up squarks, charged sleptons. 3x3 LL for sneutrinos

                                               
                                            

3x3 flavour-violating               

LR mass terms are SU(2)W-breaking - 
related to trilinear scalar couplings               

M
2
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(

M2
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)AB

ij

m2

f̃

                                              33 flavour-violating parameters 
                                              45 CPV (some flavour-conserving) 

SUSY flavour problem



d                                                      where are their effects?

 o

- elusiveness of deviations from SM in flavour physics
  seems to make MSSM look unnatural

- SUSY flavour physics = physics of SUSY breaking !

(

δ
u,d,e,ν
ij

)

AB
≡

(

M2

ũ,d̃,ẽ,ν̃

)AB

ij

m2

f̃

[Gabbiani et al 96; Misiak et al 97 ]
these numbers from [SJ, 0808.2044]

SUSY flavour problem



Addendum: MSSM and diphoton
The MSSM contains a two-Higgs-doublet model, and in addition also 
sfermions, higgsinos, and gauginos.

If R-parity conserved, (visible-sector) candidate states are H0 and A0

[nb bound states like stoponium can be ruled out] 

- 2HDM is model II, giving a fast approach to decoupling limit and a 
strong suppression of W and H+ loops

- gluon fusion only plausible production mode as Yukawa couplings to 
light quarks small

- would require substantial loop-induced couplings to gluons from 
squarks, and to photons from squarks, sleptons, and charginos



MSSM: how to bound?
Sfermion loop functions almost step-function like in 
magnitude, steep fall-off at threshold msferm = 375 GeV

- difficult in light of direct searches, but blind spots exist

- difficult to have light stops with 126 GeV Higgs. However, 
combinations of one light and one heavy and/or large 
trilinears conceivable

- even for stop contribution have six-dimensional parameter 
space, difficult to scan numerically

Main idea:  use/assume stability of our charge- and colour-
conserving, EW symmetry-breaking vacuum

get bounds on each sfermion contribution that only depend 
on the 2 sfermion masses and tan(beta).

This turns out to be numerically tractable and sufficien



MSSM: vacuum stability
Many directions in MSSM scalar field space can develop 
charge- and colour-breaking minima. Consider:

For instance, requiring the minimum along the first two 
directions to be at the origin implies (after some reworking of the 
usual form):

only the stop mass eigenvalues and tan(beta) appear on r.h.s!

as a result, the sum of the two stops’ contributions is rigorously 
bounded by a simple function of mt1, mt2, tan(beta).

will be the absence of charge- and colour-breaking minima of the scalar potential. This

could in principle be relaxed to only require metastability over cosmological timescales; we

leave this aside for future work. As we will see, this assumption is su�cient to exclude the

MSSM if the resonance interpretation is confirmed.

3.3.1 Constraints from vacuum stability

An essential role in our argument is played by the upper bounds on the µ parameter

and the soft trilinear terms that follow from requiring the absence of charge- and colour-

breaking minima of the MSSM scalar potential. The derivation of these bounds is well

known [39–46] and involves suitable one-dimensional directions of the MSSM scalar field

space. Employing the four directions

TL = TR = H0

u, BL = BR = H0

d , BL = TR = H�
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MSSM: verdict
Put signal strength constraint in the following form:

(width dominated by decays to top and bottom)

Bounding the l.h.s. by adding bounds on individual contributions 
[including charginos, W, Higgs, top, bottom] linearly (in cgam and 
cg) gives:

Unless metastability (or some unexpectedly large higher-order 
correction) saves it, H and A candidates would be ruled out. 
(Argument generalises to RPV sneutrino scenario)

mode is from gluon fusion, due to small Yukawa couplings and the fact that we are deep

in the decoupling regime, MH0 � MZ . As we have seen above, the 2HDM fails by a large

margin to accommodate the data. However, in the MSSM there are extra contributions to

the Hgg couplings from sfermions and to the H0�� couplings from sfermions and charginos,

in addition to those already present in the 2HDM. The A0gg and A0�� vertices receive

no sfermion contributions at one loop as a consequence of CP symmetry, though they do

receive contributions from charginos.4 Dimensional analysis gives, for the contribution of

the two stops, for M
SUSY

= 1 TeV,

cg ⇠ 2g2

s ⇥ vMH0

M2

SUSY

⇠ 0.5

and

c� ⇠ 2Nce
2 ⇥ vMH0

M2

SUSY

⇠ 0.1.

Even allowing for similar contributions from other sparticles, this suggests that generically,

the product |cgc� | < 1, nearly three orders of magnitude below what is required according

to Eq. (2.9). However, we must also contemplate that the true resonance width could

be smaller than the “nominal” 45 GeV. The decay width of H0 is dominated by tree-

level decays into top and bottom quarks, and is essentially determined in the MSSM as a

function of tan �, with a minimum of about 2 GeV at tan � ⇡ 6. Hence, Eq. (2.9) can be

recast as |c�cg|p
�(tan �)/(45 GeV)

= ⇢g ⇡ 530. (3.37)

The question is how large the left-hand side may be. First, a small numerator could be

partly compensated for by a factor of up to five due to the denominator. Second, an MSSM

spectrum could also be quite non-degenerate, with hierarchies like m
˜t1

⌧ MH0 , µ ⌧ m
˜t2

;

this is in fact favoured by the observed Higgs mass. In particular, large µ and/or A-terms

and a light stop can lead to a parametric enhancement ⇠ {µ, At}/m
˜t1

relative to the naive

estimates above. Third, there could also be important contributions from sbottoms and

staus, as well as charginos, which brings in a large subset of the MSSM parameters. A

conclusion about the fate of the MSSM requires a quantitative treatment, but a brute-force

parameter scan is not really feasible and in any case beyond the scope of this work. Instead,

the purpose of the rest of this section is to obtain simple yet conservative bounds on all

one-loop contributions over the entire MSSM parameter space. First, we will be imposing

tan � > 1. The reason is that the H0tt̄ coupling is
p

2mt/(v tan �) in the decoupling

limit, which for tan � < 1 implies a decay width significantly exceeds the width allowed by

observations, cf section 2.1. (Independently, such large couplings would lead to a Landau

pole in yt, and/or strong coupling at low scales, and has very strong support from the

observed Higgs mass of 125 GeV, which we will not separately impose.) The key assumption

4As in the rest of this work, we assume CP conservation. Without this assumption, the gluonic and

photonic couplings of some superposition of the two heavier mass eigenstates H2 and H3 will receive

sparticle loop contributions, so apart from a division of the diphoton signal between H2 and H3 resonant

contributions, we do not expect qualitative changes to our conclusions.
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Figure 8. Comparison of the upper bound on the left-hand side of Eq. (3.37) to the signal suggested
by the diphoton excesses, as a function of tan �. The red horizontal line corresponds to the signal,
and the blue dots represent our conservative upper bound.

bound on the left-hand side of Eq. (3.37). This is displayed in Figure 8. We observe that

this bound still misses the data by more than a factor of two, even at the point of closest

approach at tan � ⇠ 5. It is fairly clear that the bound could be made stronger by, for

example, employing more properties of the function h or formulating a higher-dimensional

extremization problem (closer to a full scan of the MSSM parameter space). We must also

stress that our conclusions here are specific to the MSSM, and attest to the high predic-

tivity of the model. If the MSSM cannot survive in regions of metastability (where charge

and colour-breaking minima exist but are not tunneled to over cosmological timescales, an

unlikely possibility), more complicated supersymmetric models might hence still accommo-

date the excess, although the techniques described here may be useful in scrutinizing them.

Another logical possibility of saving the MSSM would be production through the decay of

heavier particles (say, stops, which could themselves be produced from gluino and squark

decays). As mentioned in the beginning, the experimental data do not seem to support

such a mechanism.

4 Summary and Outlook

This work deals with the core phenomenology of the diphoton excess observed by the LHC

experiments ATLAS and CMS around 750 GeV diphoton invariant mass. We have consid-

ered both the case where the data are interpreted by a narrow and a broad resonance. We

obtained model-independent constraints on the allowed couplings and branching fractions

to various final states, including the interplay with other existing bounds. Our findings

suggest that the anomaly cannot be accounted for by the presence of a single additional

singlet or doublet spin-zero field and the Standard Model degrees of freedom; this includes

– 24 –

Gupta, SJ, Kats, Perez, Stamou 1512.05332



Sgoldstino

Couplings to photons and gluons given in terms of photino 
and gluino mass (F = SUSY-breaking F-term)
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contains additional hard-breaking operators, e.g. quartic Higgs couplings. The latter make

the Higgs sector resemble a two-Higgs doublet model with an additional (complex) singlet.

LSSB models present a much milder electroweak fine-tuning than usual MSSMs [10,11] and a

rich phenomenology [9–12]. As discussed in refs. [5,6,8], the LSSB scenario can nicely explain

the diphoton excess at 750 GeV observed at the LHC.

Let us summarize the main ingredients of LSSB scenarios. Expanding in inverse powers

of M , superpotential, W , Kähler potential, K, and the gauge kinetic function, fab, read

W = WMSSM + F
⇣
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i
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fab =
�ab
g2a


1 + ca

�

M
+ · · ·

�
. (3)

Here all the parameters are dimensionless, except the µ, µ0 · · · parameters in the superpo-

tential, which have dimensions of mass. Replacing � by its auxiliary field, F , one gets the

soft breaking terms of the theory. In particular, from Eq. (3), one gets masses for gluinos,

M3, winos, M2, and the bino, M1, e.g. M1 = c1F/M . Likewise, replacing � by its scalar

component, a complex singlet field, that we also denote by �:

� =
1p
2
(�S + i�P ) , (4)

(where �S is the scalar component and �P the pseudoscalar one) one obtains couplings of

the �’s with the MSSM fields. In particular, the coupling to gluons and photons is directly

related to gaugino masses as:

L � M3

2
p
2F

tr Ga
µ⌫(�SG

aµ⌫ � i�P G̃
aµ⌫) +

M�̃

2
p
2F

tr Fµ⌫(�SF
µ⌫ � i�P F̃

µ⌫) , (5)

where M�̃ is the photino mass,

M�̃ = M1 cos
2 ✓W +M2 sin

2 ✓W . (6)

Similarly, from Eqs. (1) and (2), the scalar potential V = VF + VD for the two supersym-
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Figure 1: Regions of the M3,M�̃ plane in which the observed cross section �(pp ! � ! ��)

is reproduced, assuming
p
F = 4 TeV and M1 = M2. The green and blue bands correspond

to � = 0.06M� and the real � from decays into SM gauge bosons. Thin (broad) bands

correspond to 1� (2�). The gray region is excluded by LHC dijet searches (but applies only

to the blue band).

resonance that ATLAS reports. In the sgoldstino scenario we consider, such double resonance

is a natural possibility, as the complex singlet field � has two real components, as explicitly

shown in Eq. (4), and generic scalar potentials give di↵erent masses to �S and �P . Indeed,

such mass splitting has been proposed in [6] as a resolution to the puzzle of the large width

of the 750 GeV resonance. In this section we go beyond that analysis in several respects,

pointing out that other sources of sgoldstino mass splitting, di↵erent from the one considered

in [6], are possible and interesting.

After electroweak symmetry breaking (EWSB), the mass matrix for the neutral scalars in

generically mixes the two sgoldstino fields �S,P with three Higgs fields: the light Higgs h0,

and the two heavy ones, H0 and A0. In first approximation, neglecting e↵ects from EWSB,

as v ⌧ M�, one simply gets from (7) the two squared-mass eigenvalues m̃2(↵�± ⇢�). A small

mass splitting requires ⇢� ⌧ ↵�, in which case �M� ' m̃⇢�/
p
↵� ' M�⇢�/↵�. So, �M� ⇠ 30

GeV requires the mild hierarchy ⇢�/↵� ⇠ 0.04 between ⇢� and ↵�, the Wilson coe�cients

5

Casas,Espinosa,Moreno 1512.07895

(width can be enhanced through 
decays to hh, higgsinos, via mixing 
with Higgs)

SUSY might be feasible if SUSY-breaking scale (F) is close to the TeV scale 
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Figure 1: Invariant mass distribution of the selected diphoton events. Residual number of events with respect to the
fit result are shown in the bottom pane. The first two bins in the lower pane are outside the vertical plot range.

The events in this region are scrutinized. No detector or reconstruction e�ect that could explain the larger
rate is found, nor any indication of anomalous background contamination. The kinematic properties of
these events are studied with respect to those of events populating the invariant mass regions above and
below the excess, and no significant di�erence is observed.

The Run-1 analysis presented in Ref. [13] is extended to invariant masses larger than 600 GeV by using the
new background modeling techniques presented in this note (cf. Section 7). The compatibility between
the results obtained with the 8 TeV and 13 TeV datasets is estimated under the NWA hypothesis and
assuming a large-width resonance with ↵ = 6%, using the best fit value of the ratio of cross sections. For
an s-channel gluon-initiated process, the parton-luminosity ratio is expected to be 4.7 [43]. Under those
assumptions, the results obtained with the two datasets are found to be compatible within 2.2 and 1.4
standard deviations for the two width hypotheses respectively.

The 95% CL expected and observed upper limits on �fiducial⇥BR(X ! ��), corresponding to the fiducial
volume defined in Section 6, are computed using the CLs technique [39, 44] for a scalar resonance with
narrow width as a function of the mass hypothesis mX , and are presented in Figure 3. The larger diphoton
rate in the mass region around 750 GeV is translated to a higher-than-expected cross section limit at the
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most significant
deviation from BG model
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local significance 3.6 sigma
if assuming narrow width
(ie <energy resolution, ≈ 8 GeV 
at M=750 GeV)
[global 2.0 sigma]

if width allowed to float:
local significance 3.9 sigma
for
width/mass ≈ 6%
(width ≈ 45 GeV)
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Figure 3: Observed invariant mass spectrum for the EBEB (top) and EBEE (bottom). The results
of parametric fits to the data are also shown.

photon candidates are matched to those selected in the analysis using a k-nearest-neighbours
algorithm, with k=10.

Figure 4 shows, in mgg bins, the measured contributions of the different background compo-
nents in the region ICh < 5 GeV. It can be seen that the dominant component, accounting for
more than 90(80)% of the selected events in the EBEB (EBEE) category, is represented by the
irreducible gg background.

The spectrum of the irreducible background extracted through the procedure described above
is then compared with the predictions extracted by rescaling the mass spectrum predicted by
the Sherpa generator to the one extracted from the 2gNNLO program [32]. The result of the
comparison is shown in Fig. 5. The mass spectra predicted by the simulation are in good agree-
ment with the one seen in data.



But is it real? What if?
It could be a statistical fluctuation 
  - will know next summer at the earliest (req more data)

  - look-elsewhere effect should only be applied
     either to ATLAS and CMS. Ie ATLAS 2.0 sigma global,
     then look only near 750 GeV in CMS, giving 2.6 sigma. 
     Clearly above the evidence threshold if combined.

Small, smooth background, fitted to sidebands.
     (See however                                                                    )

In the past correct UV picture has been guessed based on less 
significant anomalies (eg Cabibbo mixing).

no 13 TeV searches for other final states yet

Explanations tend to imply light exotics, within LHC reach

Davis,Fairbairn,Heal,Tunney arXiv:1601.03153 



Characterisation of the 
resonance



If it’s real, what do data tell us?

Integer spin 0 or spin >=2  (Landau-Yang)

M = 750 GeV

Gamma <= 45 GeV

The particle likely couples to quarks and/or gluons.

The particle is likely resonantly produced (no patterns in the 
data indicating a decay from heavier particles)

Will assume spin-0 s-channel resonance in the following.

signal and the most important resonance search constraints from existing LHC searches in

the context of BSM models. We derive a number of bounds, including model-independent

lower bounds on the branching ratio and partial width into photons of the hypothetical

new particle. The second part investigates concrete scenarios, including the possibility of

interpreting the resonance as the dilaton of theories with spontaneous breaking of scale

invariance or as a heavy Higgs scalar in two-Higgs-doublet models (2HDM). We find the

properties of the observed resonance to be quite constraining. In particular, the interpreta-

tion as an s-channel resonance, if confirmed, cannot be accommodated within the Minimal

Supersymmetric Standard Model (MSSM) even under the most conservative assumptions

about the MSSM parameters and the true width of the resonance; this conclusion holds if

we require the absence of charge- and colour-breaking minima.

2 Model-independent constraints

We start by discussing what can be inferred about the new particle from data alone. We

will first describe the implications of the observed properties of the diphoton bumps, and

then examine the constraints from the absence of significant excesses in resonance searches

in other final states that could be sensitive to other decay modes of the same particle.

2.1 Implications of the excess alone

Both ATLAS and CMS observe excesses in a diphoton invariant mass region near 750 GeV [1,

2]. For the purposes of this work, we will generally assume the signal contribution to be

N = 20 events for L = 5.8 fb�1 integrated luminosity (adding up ATLAS and CMS), but

will make clear the scaling of our findings with N wherever feasible. We will assume a

signal e�ciency (including acceptance) of ✏ = 50%, even though, in general, this does have

some dependence on both the experiment and the details of the signal model.

The most straightforward signal interpretation is resonant s-channel production of a

new unstable particle. The observed signal strength corresponds to a 13 TeV inclusive cross

section to diphotons of

�
13

⇥ BR�� ⇡ 6.9 fb ⇥
✓

N

20

◆✓
50%

✏

◆✓
5.8 fb�1

L
13

◆
. (2.1)

The diphoton final state precludes a spin-one interpretation due to the Landau-Yang

theorem [3, 4], and we will henceforth assume spin zero. We take the mass to be M =

750 GeV; small variations have no significant impact on our findings. The shape of the

excess in ATLAS may indicate a width of about � = 45GeV [1]. However, we will also

contemplate the case of smaller width below, and discuss how our main findings depend

on this.

A minimal dynamical input is necessary to interpret the result and incorporate 8TeV

LHC constraints. The width-to-mass ratio is small enough to justify a narrow-width ap-

proximation to the level of accuracy we aim at here. In the narrow-width limit, resonant

scattering amplitudes factorize into production and decay vertices, which we parameterize
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Width

mode Width coe�cient ni ni (#)
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i
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Table 1. Width coe�cients.

by terms in a “Lagrangian” for the resonance S,

L = � 1

16⇡2

1

4

c�

M
SFµ⌫Fµ⌫ � 1

16⇡2

1

4

cg

M
SGµ⌫,aGa

µ⌫

� cW MWSW+ µW�
µ � 1

2
cZMZSZµZµ �

X

f

cfS f̄f . (2.2)

In this parametrization, M is the mass of the resonance S. We emphasize that each term

denotes a particular production and/or decay vertex and that the parameterization L does

not make any assumptions about hierarchies of scales.1 Note that if S is a pseudoscalar,

one should set cW = cZ = 0 and replace Fµ⌫Fµ⌫ ! Fµ⌫F̃µ⌫ , Gµ⌫,aGa
µ⌫ ! Gµ⌫,aG̃a

µ⌫ ,

S f̄f ! iS f̄�5f and all our results involving the couplings c� , cg and cf would be applicable.

The total decay width of S imposes one constraint on the couplings,

�

M
=

X

i

�i

M
=

X

i

ni|ci|2 ⇡ 0.06 , (2.3)

with the dimensionless coe�cients ni that will be useful to us listed in Table 1. In particular,

Eq. (2.3) directly implies upper bounds on the magnitude of each ci, since observations

imply that the width cannot significantly exceed 45 GeV.

It is possible and convenient to represent the observed signal in terms of the branching

ratios to the production mode and to ��. If a single production mode, p, dominates, the

number of signal events, N , in the 13 TeV analyses fixes the product

BR�� ⇥ BRp = np
M

�

N

✏x13,p
S L

13

= p ⇥
✓

N

20

◆✓
45 GeV

�

◆✓
5.8 fb�1

L
13

◆
, (2.4)

where

p ⇡ {2.5, 5.5, 8.9, 96, 140, 310, 20000, 25000}⇥ 10�5 (2.5)

1In particular, the “couplings” ci are on-shell form factors that generally include contributions from light

particles and CP-even phases due to unitarity cuts. Contributions from particles with mass � M can be

matched to a local e↵ective Lagrangian similar to Eq. (2.2). We discuss examples in Section 3.
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In this parametrization, M is the mass of the resonance S. We emphasize that each term

denotes a particular production and/or decay vertex and that the parameterization L does

not make any assumptions about hierarchies of scales.1 Note that if S is a pseudoscalar,

one should set cW = cZ = 0 and replace Fµ⌫Fµ⌫ ! Fµ⌫F̃µ⌫ , Gµ⌫,aGa
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µ⌫ ,
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with the dimensionless coe�cients ni that will be useful to us listed in Table 1. In particular,

Eq. (2.3) directly implies upper bounds on the magnitude of each ci, since observations

imply that the width cannot significantly exceed 45 GeV.

It is possible and convenient to represent the observed signal in terms of the branching

ratios to the production mode and to ��. If a single production mode, p, dominates, the

number of signal events, N , in the 13 TeV analyses fixes the product

BR�� ⇥ BRp = np
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where

p ⇡ {2.5, 5.5, 8.9, 96, 140, 310, 20000, 25000}⇥ 10�5 (2.5)

1In particular, the “couplings” ci are on-shell form factors that generally include contributions from light

particles and CP-even phases due to unitarity cuts. Contributions from particles with mass � M can be

matched to a local e↵ective Lagrangian similar to Eq. (2.2). We discuss examples in Section 3.
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(or smaller, for more 
narrow width)

The diphoton spectrum tells us, without assumptions on production,
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model-independent “width coefficients”
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In this parametrization, M is the mass of the resonance S. We emphasize that each term

denotes a particular production and/or decay vertex and that the parameterization L does

not make any assumptions about hierarchies of scales.1 Note that if S is a pseudoscalar,

one should set cW = cZ = 0 and replace Fµ⌫Fµ⌫ ! Fµ⌫F̃µ⌫ , Gµ⌫,aGa
µ⌫ ! Gµ⌫,aG̃a

µ⌫ ,

S f̄f ! iS f̄�5f and all our results involving the couplings c� , cg and cf would be applicable.

The total decay width of S imposes one constraint on the couplings,
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with the dimensionless coe�cients ni that will be useful to us listed in Table 1. In particular,

Eq. (2.3) directly implies upper bounds on the magnitude of each ci, since observations

imply that the width cannot significantly exceed 45 GeV.

It is possible and convenient to represent the observed signal in terms of the branching

ratios to the production mode and to ��. If a single production mode, p, dominates, the

number of signal events, N , in the 13 TeV analyses fixes the product
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M

�

N

✏x13,p
S L

13

= p ⇥
✓

N

20

◆✓
45 GeV

�

◆✓
5.8 fb�1

L
13

◆
, (2.4)

where

p ⇡ {2.5, 5.5, 8.9, 96, 140, 310, 20000, 25000}⇥ 10�5 (2.5)

1In particular, the “couplings” ci are on-shell form factors that generally include contributions from light

particles and CP-even phases due to unitarity cuts. Contributions from particles with mass � M can be

matched to a local e↵ective Lagrangian similar to Eq. (2.2). We discuss examples in Section 3.
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NB - Yukawa coupling
~ 2/3 gives 45 GeV 
width

No strong coupling 
needed.



Signal strength
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with the dimensionless coe�cients ni that will be useful to us listed in Table 1. In particular,

Eq. (2.3) directly implies upper bounds on the magnitude of each ci, since observations

imply that the width cannot significantly exceed 45 GeV.

It is possible and convenient to represent the observed signal in terms of the branching

ratios to the production mode and to ��. If a single production mode, p, dominates, the
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for nominal width, for VBF get  BR(diphoton) ~ BR(WW/ZZ) ~ 50% 
 
for smaller width, no solution for VBF production.

p
s [pb] gg uū dd̄ ss̄ cc̄ bb̄ VBFWW VBFZZ

13 x13,p
S 7.5 · 10�3 250 150 14 9.8 4.4 0.23 7.0 · 10�2

8 x8,p
S 1.7 · 10�3 95 57 3.7 2.3 0.96 5.5 · 10�2 1.7 · 10�2

13/8 rp 4.4 2.6 2.7 3.9 4.2 4.6 4.2 4.2

Table 2. Leading-order production cross sections for a resonance with M = 750 GeV for cg = cf =
c� = cW = cZ = 1, at the 13 TeV and 8 TeV LHC, and their ratio, rp, using the leading-order PDF
set nn23lo1 [9]. For the modes gg, uū, dd̄, ss̄, cc̄, and bb̄ the production cross section corresponds
to the process pp ! S; for VBFWW and VBFZZ to the process pp ! S+jj.

for the production modes

p = gg, uū, dd̄, ss̄, cc̄, bb̄, VBFWW , VBFZZ , (2.6)

respectively, with np = ngg, nqiq̄i , nWW , nZZ provided in Table 1.2 We used the leading-

order
p

s = 13 TeV production cross sections for M = 750 GeV,

�
13

= |cp|2x13,p
S , (2.7)

where x13,p
S are listed in Table 2. A direct consequence of Eq. (2.4) is a lower bound on the

branching ratio into photons,

BR�� > p

✓
N

20

◆✓
45 GeV

�

◆✓
5.8 fb�1

L
13

◆
. (2.8)

Note that this bound becomes more stringent if the width of the resonance is reduced.

Alternatively, the excess events fix the product of couplings

|c�cp| =

s
n�1

�
�

M

N

✏x13,p
S L

13

= ⇢p ⇥
s✓

N

20

◆✓
�

45 GeV

◆✓
5.8 fb�1

L
13

◆
, (2.9)

where

⇢p ⇡ {530, 2.9, 3.7, 12, 15, 22, 95, 170} . (2.10)

Importantly, increasing the production couplings, cp, increases also the decay rates to

the production modes. Since these compete with the �� decay, c� cannot be arbitrarily

small. The smallest possible |c� | corresponds to the situation where the total width is

dominated by the production mode (which in particular implies ��� ⌧ �p). Since the de-

pendence on |cp|2 cancels between the production cross section and the diphoton branching

2Results for VBF production, here and below, involve the use of the SWW and SZZ vertices in Eq. (2.2)

in Madgraph [5]. This is correct in either of the following two situations: (i) the origin of the vertices is

local physics, originating in scales � M , such as in the dilation case in Section 3.1.3; in such a case

the vertices can be interpreted as a unitary-gauge Lagrangian couplings and be used o↵ shell; or (ii) the

production process is dominated by nearly on-shell W , Z bosons (the same prerequisite under which the

equivalent-boson approximation [6, 7] is justified). VBF production of the 750 GeV resonance is also studied

in Ref. [8].
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Model-independent bounds (13 TeV)
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Decay back into the production mode is bounded by the measured width.

This in turn bounds the production cross-section, implying a lower bound on 
the coupling (or partial width, or branching fraction into) photons
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Figure 1. Black lines correspond to N = 20 signal events in the diphoton analyses for M = 750GeV
and � = 45 GeV when the resonance is produced from gg. Blue dashed lines are contours of fixed
branching ratio to modes other than �� or gg. The red-shaded area above the thick horizontal line is
excluded by dijet resonance searches due to decays to gg alone. The shaded gray region corresponds
to values of cg, c� that produce a width larger than 45 GeV. The right panel is a blowup of the left
one.

fraction in this limit, this bound is independent of �. We hence have the following model-

independent lower bounds on c� :

|c� | >
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(2.11)

If, as it often does, a single production mode dominates in a concrete model, Eq. (2.11)

can be directly used to identify how large c� needs to be. In the case where several initial

states contribute, a conservative lower bound is given by

|c� | >

s
ng

n�

N

✏x13,g
S L

13

= 2.7 ⇥
s✓

N

20

◆✓
5.8 fb�1

L
13

◆
. (2.12)

In Figs. 1 and 2, we plot the general relation between |c� | and |cp| for the case of

N = 20 excess events, switching on one production channel at a time. The mass and total

width are fixed at 750 and 45 GeV, respectively. The partial widths to diphotons, ��� , and

to the production mode, �p, are assumed to be supplemented by decays to other possible

final states, �
other

, to make up the total width:

�
other

⌘ � � ��� � �p . (2.13)

Contours of fixed BR
other

⌘ �
other

/� are shown in dashed blue. From the left panels of

the figures it is evident that for a given BR
other

there exist two solutions, one with small

and another with large c� . The shaded gray regions correspond to values of cp and c� , for
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Conservative, valid for any mix of production modes.
Equal to bound if gg initial state assumed.
Independent of the width! (Cancels out.)



8 TeV search constraints
No other resonance searches with 13 TeV data below a TeV 
yet. But many at 8 TeV. Important constraint on possible 
explanations!

Production cross sections scales with parton luminosity:

Diphoton searches at 8 TeV provide important constraints:

Slightly disfavours u-ubar and d-dbar initial states

Gupta, SJ, Kats, Perez, Stamou 1512.05332

decay mode i ! gg qq̄ tt̄ WW ZZ hh Zh ⌧⌧ Z� ee + µµ

(�
8

⇥ BRi)max [fb]
4000 1800 500 60 60 50 17 12 8 2.4

[13] [13] [14] [15] [16] [17] [18] [19] [20] [21]

production p = gg 2600 1200 320 38 38 32 11 7.7 5.1 1.5

✓
BRi

BR��

◆
max

uū 1500 690 190 23 23 19 6.5 4.6 3.1 0.9

dd̄ 1600 700 200 23 23 20 6.7 4.7 3.1 0.9

ss̄ 2300 1000 280 34 34 28 9.6 6.8 4.5 1.4

cc̄ 2400 1100 300 36 36 30 10 7.3 4.8 1.5

bb̄ 2700 1200 340 40 40 34 11 8.1 5.4 1.6

Table 3. Top: Bounds on 750 GeV resonances from 8 TeV LHC searches. Bottom: Derived bounds
on ratios of branching fractions for di↵erent production channel assumptions. For gg production,
bounds on the branching fraction to qq̄ are even tighter than indicated, since decays to gg will
necessarily also be present and enter the dijet searches. The same applies to branching fraction to
gg when the production is from quarks.

The compatibility of the observed excesses with the 8 TeV diphoton searches depends

primarily on the parton luminosity ratio, rp, listed in Tab. 2, since the selection e�ciencies

of the searches are similar. The ATLAS+CMS excess, Eq. (2.1), translates to

�
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20

◆
⇥ {1.6, 2.6, 2.6, 1.8, 1.7, 1.5, 1.6, 1.6} fb (2.16)

for the di↵erent production cases from Eq. (2.6). We see that N = 20 excess events at

13 TeV are borderline compatible with the 8 TeV analyses, especially if the resonance is

broad. The gg and heavy-quark production modes are somewhat favoured in this respect

because their luminosities increase more rapidly with
p

s.

The ATLAS and CMS collaborations performed searches for resonant signals in many

other final states as well. In Table 3 we list the various two-body final states relevant to

a neutral color-singlet spin-0 particle, and the corresponding 95% C.L. exclusion limits,

(�
8

⇥ BRi)max, from the 8 TeV searches. Searches for dijet resonances that employ b

tagging, and would have enhanced sensitivity to bb̄ final states, only address resonances

heavier than 1TeV [22, 23], but the limits from qq̄ searches still apply to bb̄. The recent

13 TeV dijet searches [24, 25] do not cover the mass range around 750 GeV at all, due to

triggering limitations. We also note that the limits quoted in Table 3 are approximate. In

general, they do have some dependence on the width of the resonance, its spin, etc.

Table 3 also lists the resulting constraints on the ratios of branching fractions of the

particle, for di↵erent production channel assumptions. They are computed as
✓

BRi

BR��

◆
max

= rp
(�

8

⇥ BRi)max

�
13

⇥ BR��
, (2.17)

where we use Eq. (2.1) and the parton luminosity ratios rp from Table 2.

There is always a constraint from decays to dijets since we take the resonance to couple

to either gg or qq̄ for production. Also, the production cross section needs to be relatively
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Figure 2. Black lines correspond to N = 20 signal events in the diphoton analyses for M = 750GeV
and � = 45 GeV. Di↵erent dashing styles indicate the various production modes, uū, dd̄, ss̄, cc̄, and
bb̄. Blue dashed lines are contours of fixed branching ratio to modes other than �� or the production
mode. The red-shaded areas above the various horizontal lines, with dashing styles corresponding
to the production modes, are excluded by dijet resonance searches due to decays to the production
mode alone. The right panel is a blowup of the left one.

which the total width is larger than 45GeV. Horizontal red lines and the corresponding

shaded red regions indicate the parameter space excluded by 8 TeV dijet searches. We

discuss them in the next section.

The lower bounds on c� in Eq. (2.11) are approximately the crossings of the black

lines with the BR
other

= 0 contour at the lower c� . From Fig. 1 we see that either large

cg or large c� is necessary to accommodate the excess. From this point of view, since the

production via quark fusion, Fig. 2, relies on cf . 1, it may be considered a more natural

possibility.

2.2 Interplay with previous LHC searches

Important additional information about the properties of the new particle can be obtained

based on the non-observation of any of its decays in Run 1 of the LHC, in particular in the

20 fb�1 of data collected at
p

s = 8TeV.

We first consider limits from the diphoton resonance searches. The most relevant limit

for the broad resonance hypothesis preferred by the ATLAS excess, �/M ⇡ 6%, is the

CMS limit

�
8

⇥ BR�� . 2.5 fb , (2.14)

which was derived for scalar resonances with �/M = 10% [10]. For a narrow resonance,

which might be preferred by the CMS data, the same search obtains the limit

�
8

⇥ BR�� . 1.3 fb . (2.15)

Somewhat weaker limits, of 2.5 and 2.0 fb, were obtained by ATLAS [11] and CMS [12],

respectively, for RS gravitons with k = 0.1, which are also narrow.

– 6 –

Figure 2. Black lines correspond to N = 20 signal events in the diphoton analyses for M = 750GeV
and � = 45 GeV. Di↵erent dashing styles indicate the various production modes, uū, dd̄, ss̄, cc̄, and
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production via quark fusion, Fig. 2, relies on cf . 1, it may be considered a more natural

possibility.

2.2 Interplay with previous LHC searches

Important additional information about the properties of the new particle can be obtained

based on the non-observation of any of its decays in Run 1 of the LHC, in particular in the

20 fb�1 of data collected at
p

s = 8TeV.

We first consider limits from the diphoton resonance searches. The most relevant limit

for the broad resonance hypothesis preferred by the ATLAS excess, �/M ⇡ 6%, is the

CMS limit
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8

⇥ BR�� . 2.5 fb , (2.14)

which was derived for scalar resonances with �/M = 10% [10]. For a narrow resonance,

which might be preferred by the CMS data, the same search obtains the limit
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8

⇥ BR�� . 1.3 fb . (2.15)

Somewhat weaker limits, of 2.5 and 2.0 fb, were obtained by ATLAS [11] and CMS [12],

respectively, for RS gravitons with k = 0.1, which are also narrow.
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(CMS limit for 10% Gamma/M)

(CMS limit for narrow resonance)

(ATLAS limits weaker)

p
s [pb] gg uū dd̄ ss̄ cc̄ bb̄ VBFWW VBFZZ

13 x13,p
S 7.5 · 10�3 250 150 14 9.8 4.4 0.23 7.0 · 10�2

8 x8,p
S 1.7 · 10�3 95 57 3.7 2.3 0.96 5.5 · 10�2 1.7 · 10�2

13/8 rp 4.4 2.6 2.7 3.9 4.2 4.6 4.2 4.2

Table 2. Leading-order production cross sections for a resonance with M = 750 GeV for cg = cf =
c� = cW = cZ = 1, at the 13 TeV and 8 TeV LHC, and their ratio, rp, using the leading-order PDF
set nn23lo1 [9]. For the modes gg, uū, dd̄, ss̄, cc̄, and bb̄ the production cross section corresponds
to the process pp ! S; for VBFWW and VBFZZ to the process pp ! S+jj.

for the production modes

p = gg, uū, dd̄, ss̄, cc̄, bb̄, VBFWW , VBFZZ , (2.6)

respectively, with np = ngg, nqiq̄i , nWW , nZZ provided in Table 1.2 We used the leading-

order
p

s = 13 TeV production cross sections for M = 750 GeV,

�
13

= |cp|2x13,p
S , (2.7)

where x13,p
S are listed in Table 2. A direct consequence of Eq. (2.4) is a lower bound on the

branching ratio into photons,

BR�� > p

✓
N

20

◆✓
45 GeV

�

◆✓
5.8 fb�1

L
13

◆
. (2.8)

Note that this bound becomes more stringent if the width of the resonance is reduced.

Alternatively, the excess events fix the product of couplings

|c�cp| =

s
n�1

�
�

M

N

✏x13,p
S L

13

= ⇢p ⇥
s✓

N

20

◆✓
�

45 GeV

◆✓
5.8 fb�1

L
13

◆
, (2.9)

where

⇢p ⇡ {530, 2.9, 3.7, 12, 15, 22, 95, 170} . (2.10)

Importantly, increasing the production couplings, cp, increases also the decay rates to

the production modes. Since these compete with the �� decay, c� cannot be arbitrarily

small. The smallest possible |c� | corresponds to the situation where the total width is

dominated by the production mode (which in particular implies ��� ⌧ �p). Since the de-

pendence on |cp|2 cancels between the production cross section and the diphoton branching

2Results for VBF production, here and below, involve the use of the SWW and SZZ vertices in Eq. (2.2)

in Madgraph [5]. This is correct in either of the following two situations: (i) the origin of the vertices is

local physics, originating in scales � M , such as in the dilation case in Section 3.1.3; in such a case

the vertices can be interpreted as a unitary-gauge Lagrangian couplings and be used o↵ shell; or (ii) the

production process is dominated by nearly on-shell W , Z bosons (the same prerequisite under which the

equivalent-boson approximation [6, 7] is justified). VBF production of the 750 GeV resonance is also studied

in Ref. [8].
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also implies simple bounds on ratios of BR’s:

Constraints on relative BR’s

large couplings to photons, and/or suppressed couplings to 
weak bosons, Higgs, leptons, required
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decay mode i ! gg qq̄ tt̄ WW ZZ hh Zh ⌧⌧ Z� ee + µµ

(�
8

⇥ BRi)max [fb]
4000 1800 500 60 60 50 17 12 8 2.4

[13] [13] [14] [15] [16] [17] [18] [19] [20] [21]

production p = gg 2600 1200 320 38 38 32 11 7.7 5.1 1.5

✓
BRi

BR��

◆
max

uū 1500 690 190 23 23 19 6.5 4.6 3.1 0.9

dd̄ 1600 700 200 23 23 20 6.7 4.7 3.1 0.9

ss̄ 2300 1000 280 34 34 28 9.6 6.8 4.5 1.4

cc̄ 2400 1100 300 36 36 30 10 7.3 4.8 1.5

bb̄ 2700 1200 340 40 40 34 11 8.1 5.4 1.6

Table 3. Top: Bounds on 750 GeV resonances from 8 TeV LHC searches. Bottom: Derived bounds
on ratios of branching fractions for di↵erent production channel assumptions. For gg production,
bounds on the branching fraction to qq̄ are even tighter than indicated, since decays to gg will
necessarily also be present and enter the dijet searches. The same applies to branching fraction to
gg when the production is from quarks.

The compatibility of the observed excesses with the 8 TeV diphoton searches depends

primarily on the parton luminosity ratio, rp, listed in Tab. 2, since the selection e�ciencies

of the searches are similar. The ATLAS+CMS excess, Eq. (2.1), translates to

�
8

⇥ BR�� =
�

13

⇥ BR��

rp
⇡

✓
N

20

◆
⇥ {1.6, 2.6, 2.6, 1.8, 1.7, 1.5, 1.6, 1.6} fb (2.16)

for the di↵erent production cases from Eq. (2.6). We see that N = 20 excess events at

13 TeV are borderline compatible with the 8 TeV analyses, especially if the resonance is

broad. The gg and heavy-quark production modes are somewhat favoured in this respect

because their luminosities increase more rapidly with
p

s.

The ATLAS and CMS collaborations performed searches for resonant signals in many

other final states as well. In Table 3 we list the various two-body final states relevant to

a neutral color-singlet spin-0 particle, and the corresponding 95% C.L. exclusion limits,

(�
8

⇥ BRi)max, from the 8 TeV searches. Searches for dijet resonances that employ b

tagging, and would have enhanced sensitivity to bb̄ final states, only address resonances

heavier than 1TeV [22, 23], but the limits from qq̄ searches still apply to bb̄. The recent

13 TeV dijet searches [24, 25] do not cover the mass range around 750 GeV at all, due to

triggering limitations. We also note that the limits quoted in Table 3 are approximate. In

general, they do have some dependence on the width of the resonance, its spin, etc.

Table 3 also lists the resulting constraints on the ratios of branching fractions of the

particle, for di↵erent production channel assumptions. They are computed as
✓

BRi

BR��

◆
max

= rp
(�

8

⇥ BRi)max

�
13

⇥ BR��
, (2.17)

where we use Eq. (2.1) and the parton luminosity ratios rp from Table 2.

There is always a constraint from decays to dijets since we take the resonance to couple

to either gg or qq̄ for production. Also, the production cross section needs to be relatively
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on ratios of branching fractions for di↵erent production channel assumptions. For gg production,
bounds on the branching fraction to qq̄ are even tighter than indicated, since decays to gg will
necessarily also be present and enter the dijet searches. The same applies to branching fraction to
gg when the production is from quarks.

The compatibility of the observed excesses with the 8 TeV diphoton searches depends

primarily on the parton luminosity ratio, rp, listed in Tab. 2, since the selection e�ciencies

of the searches are similar. The ATLAS+CMS excess, Eq. (2.1), translates to
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for the di↵erent production cases from Eq. (2.6). We see that N = 20 excess events at

13 TeV are borderline compatible with the 8 TeV analyses, especially if the resonance is

broad. The gg and heavy-quark production modes are somewhat favoured in this respect

because their luminosities increase more rapidly with
p

s.

The ATLAS and CMS collaborations performed searches for resonant signals in many

other final states as well. In Table 3 we list the various two-body final states relevant to

a neutral color-singlet spin-0 particle, and the corresponding 95% C.L. exclusion limits,

(�
8

⇥ BRi)max, from the 8 TeV searches. Searches for dijet resonances that employ b

tagging, and would have enhanced sensitivity to bb̄ final states, only address resonances

heavier than 1TeV [22, 23], but the limits from qq̄ searches still apply to bb̄. The recent

13 TeV dijet searches [24, 25] do not cover the mass range around 750 GeV at all, due to

triggering limitations. We also note that the limits quoted in Table 3 are approximate. In

general, they do have some dependence on the width of the resonance, its spin, etc.

Table 3 also lists the resulting constraints on the ratios of branching fractions of the

particle, for di↵erent production channel assumptions. They are computed as
✓

BRi

BR��

◆
max

= rp
(�

8

⇥ BRi)max

�
13

⇥ BR��
, (2.17)

where we use Eq. (2.1) and the parton luminosity ratios rp from Table 2.

There is always a constraint from decays to dijets since we take the resonance to couple

to either gg or qq̄ for production. Also, the production cross section needs to be relatively
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for the di↵erent production cases from Eq. (2.6). We see that N = 20 excess events at

13 TeV are borderline compatible with the 8 TeV analyses, especially if the resonance is

broad. The gg and heavy-quark production modes are somewhat favoured in this respect

because their luminosities increase more rapidly with
p

s.

The ATLAS and CMS collaborations performed searches for resonant signals in many

other final states as well. In Table 3 we list the various two-body final states relevant to

a neutral color-singlet spin-0 particle, and the corresponding 95% C.L. exclusion limits,
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⇥ BRi)max, from the 8 TeV searches. Searches for dijet resonances that employ b
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13 TeV dijet searches [24, 25] do not cover the mass range around 750 GeV at all, due to

triggering limitations. We also note that the limits quoted in Table 3 are approximate. In

general, they do have some dependence on the width of the resonance, its spin, etc.

Table 3 also lists the resulting constraints on the ratios of branching fractions of the

particle, for di↵erent production channel assumptions. They are computed as
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where we use Eq. (2.1) and the parton luminosity ratios rp from Table 2.

There is always a constraint from decays to dijets since we take the resonance to couple

to either gg or qq̄ for production. Also, the production cross section needs to be relatively
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Figure 2. Black lines correspond to N = 20 signal events in the diphoton analyses for M = 750GeV
and � = 45 GeV. Di↵erent dashing styles indicate the various production modes, uū, dd̄, ss̄, cc̄, and
bb̄. Blue dashed lines are contours of fixed branching ratio to modes other than �� or the production
mode. The red-shaded areas above the various horizontal lines, with dashing styles corresponding
to the production modes, are excluded by dijet resonance searches due to decays to the production
mode alone. The right panel is a blowup of the left one.

which the total width is larger than 45GeV. Horizontal red lines and the corresponding

shaded red regions indicate the parameter space excluded by 8 TeV dijet searches. We

discuss them in the next section.

The lower bounds on c� in Eq. (2.11) are approximately the crossings of the black

lines with the BR
other

= 0 contour at the lower c� . From Fig. 1 we see that either large

cg or large c� is necessary to accommodate the excess. From this point of view, since the

production via quark fusion, Fig. 2, relies on cf . 1, it may be considered a more natural

possibility.

2.2 Interplay with previous LHC searches

Important additional information about the properties of the new particle can be obtained

based on the non-observation of any of its decays in Run 1 of the LHC, in particular in the

20 fb�1 of data collected at
p

s = 8TeV.

We first consider limits from the diphoton resonance searches. The most relevant limit

for the broad resonance hypothesis preferred by the ATLAS excess, �/M ⇡ 6%, is the

CMS limit

�
8

⇥ BR�� . 2.5 fb , (2.14)

which was derived for scalar resonances with �/M = 10% [10]. For a narrow resonance,

which might be preferred by the CMS data, the same search obtains the limit

�
8

⇥ BR�� . 1.3 fb . (2.15)

Somewhat weaker limits, of 2.5 and 2.0 fb, were obtained by ATLAS [11] and CMS [12],

respectively, for RS gravitons with k = 0.1, which are also narrow.
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large to accommodate the excess without too large c� , so limits on dijet resonances may

restrict part of the parameter space of a concrete realisation. For the case in which a single

production channel dominates, we obtain upper limits on cp by saturating the gg or qq̄

dijet bounds:

BRp <

s
np

M

�

(�
8

⇥ BRp)excl

x8,p
S

⇡ {25, 19, 25, 99, 124, 193}% ⇥
✓

45 GeV

�

◆
1/2

,

|cp| < {97, 0.31, 0.35, 0.70, 0.79, 0.99}⇥
✓

�

45 GeV

◆
1/4

.

(2.18)

The corresponding excluded regions in the cp–c� planes of Figs. 1 and 2 are the red-shaded

areas.

By combining Eq. (2.18) with Eqs. (2.4) and (2.9), we obtain a second lower bound on

BR�� and c� ,

BR�� > {1.0, 2.9, 3.6, 9.7, 11, 16}⇥ 10�4 ⇥
✓

N

20

◆✓
5.8 fb�1

L
13

◆✓
45 GeV

�

◆
1/2

,

|c� | > {5.5, 9.4, 11, 17, 19, 22}⇥
s✓

N

20

◆✓
5.8 fb�1

L
13

◆✓
�

45 GeV

◆
1/4

.

(2.19)

Depending on the width and the production mechanism, these bounds can be stronger or

weaker than those in Eqs. (2.8) and (2.11).

Figure 3 shows the required branching fraction BR
other

to modes other than the pro-

duction mode and �� as a function of the branching fraction of the production mode, BRp.

The black lines correspond to N = 20 signal events in the 13 TeV diphoton analyses. These

plots highlight the importance of BR
other

, which in most of the viable parameter space is

the dominant branching fraction. In blue lines, it is also shown to which extent BR
other

can be attributed to various decays into Standard Model particles, in view of the 8 TeV

LHC bounds on such decays. We see that when the diphoton signal is achieved by a large

coupling to gluons/quarks and a small coupling to photons (right-hand side of the plots),

it may be di�cult to obtain � = 45 GeV with decays to SM particles alone (if we neglect

the possibility of large branching fractions to ⌫⌫̄ or multibody final states). On the other

hand, in the case of a small coupling to gluons/quarks and a large coupling to photons (left

side of the plots) there is no such limitation.

3 Models

We now turn to discuss concrete models. First, in section 3.1, we discuss interpretations of

the resonance as a scalar that is a singlet under the SM gauge group. Next, in section 3.2,

we interpret it as a doublet of SU(2)L. Finally, in section 3.3 we analyse the resonance

being a heavy Higgs of the MSSM.
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