

Development of New Readout Electronics for the ATLAS LAr Calorimeter at the sLHC

Arno Straessner – TU Dresden

on behalf of the ATLAS Liquid Argon Calorimeter Group

Topical Workshop on Electronics in Particle Physics Paris September 21-25, 2009

- The ATLAS Calorimeter Readout
- Upgrade Scenario and Readout Architecture for the sLHC
- Radiation Hard Front-end Electronics
- High Bandwidth Back-end Electronics
- Outlook

The ATLAS Liquid Argon Calorimeters

4 high granularity LAr calorimeters:
 e.m. barrel Pb/LAr
 e.m. endcap Pb/LAr
 had. endcap Cu/LAr
 forward calorimeter Cu/W/LAr

- 182486 readout channels
- 40 MHz proton-proton collision rate
- front-end and trigger-sum electronics
 → on-detector in radiation environment
- back-end electronics and more trigger logic
 → shielded counting room

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Current Layout of the Calorimeter Readout

JSA15

On detector

PD

Readout crate (ROC)

SPAC master board

Calibration

SPAC slave

DAC - A

15K

Cryostat

DAQ

board

TBM

Front-end board

SPAC slave

Controlle

Mother-board <u>۸۸۸</u>

Electrode

T=90°K

ę

E= ∑a, S

T=∑b_i S_i

ROD

Optical link

Bufferina

ADC

Preamplifiers

~180k

32 bits

40 MH

External triggers

processor

L1

interface

Tower builder

SPAC slave

network

SPAC bus

TTCrx 40 MHz clock L1A

Optical

reception SPAC

slave

Controller board

E H

Ē

TTC crate

CTP

Calorimeter

monitoring

- 1524 front-end boards (FEB)
 - \rightarrow up to 128 channels
 - \rightarrow preamp, pulse shaping, buffer and sampling
- in 58 front-end crates
 - \rightarrow low-voltage power supplies (LVPS)
- connected to off-detector electronics by 1600 optical links

- 192 read-out driver boards (ROD) \rightarrow digital filter

- 800 optical links to DAQ PCs
- 68 read-out system PC's (ROS) \rightarrow DAQ and high-level trigger buffer

Upgrade to super-LHC

- sLHC starts in ~2019/20
- sLHC challenges
 - 10x more radiation
 - up to 20 times more pile-up events
- readout challenges
 - \rightarrow rad. hardness
 - \rightarrow same power consumption
 - \rightarrow same physics performance
 - same dynamic range
 - noise suppression

new calorimeter readout for 2019/20

Current Front-End Limitations

- complex board architecture:
 - 11 ASICs with different technologies
 - some obsolete (DMILL, ...)
 - 19 voltage regulators
 - analog pipelines (SCA)
 - 80 W/board
 - water-cooled
- main concern:
 - qualified for 10 years of normal LHC operation (incl. safety factors)
 - sLHC: 300 Krad and 10¹³ neq/cm²
 - small number of spares (6%)
- Radiation Estimated **Commercial Process** DMILL RTC Type Units RTC Level TID Gy 50 525 1700 1 MeV equiv. n/cm² 1.6×10^{12} 1.6×10^{13} 1.6×10^{13} NIEL Hadrons (> 20 MeV)/cm² $7.7 imes 10^{12}$ 7.7×10^{12} 7.7×10^{11} SEE

min, level-1 intervals 125 ns

(8-32 channels/trigger tower)

fixed analog trigger sums

level-1 trigger rate only up to 100 kHz

LHC Radiation Tolerance Criteria

• performance limitations:

max. latency 2.5 µs

- replacement of single components impossible
- → new front-end boards based on today's technology with same power budget

- evaluate different options:
 - shaper and gain settings
 - analog ↔ digital pipeline
 - on-detector ↔ off-detector pipeline
 - analog \leftrightarrow digital gain selector
 - analog trigger sums

 → possibility to keep current level-1
 trigger system

- R&D baseline:
 - shaping and digitization at high rate
 - \rightarrow 128 channels at 40 MHz
 - transfer rate \rightarrow 100 Gb/s per FEB
 - rad. hard optical links at ~10 Gb/s
 - fully digital off-detector trigger
 - \rightarrow digital pipeline on ROD
 - \rightarrow trigger sums on ROD and calorimeter trigger
 - \rightarrow more flexible and higher trigger granularity

- SiGe IBM 8WL BiCMOS process (0.13 micron)
 - technology also studied for ATLAS silicon strip tracker readout and ILC detectors
- irraditation tests with spare IBM test structures
- example: final gain after neutron irradiation:
 - β>50 at 10¹⁴ neq/cm²
 - dispersion due to irregular test structure

- own chiplet submitted end of 2008
- irradiation program finished and data is being analysed
 SiGBIT 8WI 2.7 X 1.8mm

Preamp and Shaper Prototype

• < 0.2% non-linearity

power ~ 40 mW / preamp and ~ 100 mW /shaper

see: Parallel session A2 – ASICs – Mitch Newcomer

New Readout Electronics for the ATLAS LAr Calorimeter at the sLHC - Arno Straessner

preamp

· C:\LTSPICE\LTSpice\SiGe Design 08\SiGeS

shaperso

LAr Chiplet

2mm X 2mm

- ADC is the most challenging component in the new "baseline" architecture
 - 15(16) bit dynamic range 12 bit resolution 40 MSPS
 - radiation tolerant and immune to single event effects (SEE)
- R&D strategies:
 - evaluate commercial parts
 - planning to test several COTS ADCs:
 - AD9259 (14/12 bit), ST-RHF1201 (12 bit), TI ADS5281 (12 bit)
 - development of a custom ADC
 - started with IBM 8HP SiGe \rightarrow 8RF CMOS is now the candidate technology
 - shown to be radiation hard
 - lower cost compared to SiGe
- 12 bit pipeline ADC with 1.5 bits/stage and digital error correction
 - on-board correction will require rad-hard redundant memory for calibration constants
- main building blocks of custom pipeline ADC:
 - operational trans-impedance amplifier (OTA)
 - core for the S/H and Multiplying DAC subsystems
 - S/H capacitor important since noise ~ $\sqrt{kT/C}$

- chiplet submitted to CERN/MOSIS with OTA + cascade of 2 T/H for testing
- expected back by late October

Raditation Hard Optical Links

- Silicon-on-Sapphire (SoS) technology:
 - 0.25 µm UltraCMOS by Peregrine Semiconductors
 - low power, low cross talk \rightarrow good for mixed-signal ASIC designs
 - economical for small to medium scale ASIC development
- TID and SEE radiation tests performed in 2007:
 gamma irradiation with ⁶⁰Co source up to 4 Mrad

UltraCMOS[®] Process

p-channel FET

n-channel FET

insulating sapphire substrate

- with grounded substrate: small leakage currents (250 nA) and small threshold voltage increase
- irraditation in 230 MeV proton beam
 - no SEE observed in shift registers at a flux of 7.7×10⁸ proton/cm²/sec
 - still correctly functioning after total fluences of 1.9×10¹⁵ p/cm² (106 Mrad(Si))

Link On Chip Prototype #2 (LOC2)

Ref Clk

5Gbps

D flip-flop

2:1MUX

- LOC1 prototype suffered of high jitter, now LOC2:
- 5 Gbps 16:1 serializer
 - 3 stages of 2:1 MUX
 - last stage: 2 fast transmission gate D-flip-flops
- input data and ref. clock in LDVS
- output in CML at 5 Gbps → CERN Versatile Link
 Parallel Session B5 Optoelectronics and Links: Paulo Moreira, Jan Troska
- transmission bit error rate lower than 1×10⁻¹²
- power consumption is below 500 mW or less than 100 mW/Gbps.
- post-layout simulation show that critical components meet LOC2 requirements (PLL, DFF, CML driver)
- user interface will be implemented in FPGA for tests
- effort towards a 5 GHz LC-tank based PLL:
 - random jitter < 1 ps (RMS) achieved in simulations
 - needed for ultimate goal of a ~10 Gbps link

New Readout Electronics for the ATLAS LAr Calorimeter at the sLHC -

2.5G

625M

1.25G

with ideal power source: TJ=34 ps

1.0002

Arno Straessner

1.0003

- 218 RODs in non rad-hard environment
- 1524 FEBs x 100 Gbps continuous data stream \rightarrow 150 Tbps

• 12-fiber optical connectors

- MPO/MTP style \rightarrow each 100 Gbps
- Xilinx & Altera FPGA embedded SERDES
- evaluate reduction of number of links by
 - latency lossless data compression/decompression algorithm
 - less bits at ADC
- FPGA based Digital Signal Processing
 - advantage of parallel data processing
- system level architecture: AdvancedTCA
 - take the advantage of industrial standard
 - shelf management protocols, power management, fast fabrics
- perform level 1 trigger sum digitally
 - flexible and fine granularity

New Readout Electronics for the ATLAS LAr Calorimeter at the sLHC - Arno Straessner

front-end

challenges

ROD injector

High Performance Digital Readout

ATCA ROD prototype

- ROD prototypes with Xilinx Virtex 5 FX (XC5VFX70T)
- 75Gbit/s fiber optic transceiver Reflex Photonics + SNAP 12
- ROD injector test with Altera Statix GX II
- 6.5 Gbps/fiber transfer rate possible
 - \rightarrow with previous prototype: stable 2.4 Gbps/f. on 12 fibers

- digital linear FIR filter → FPGA embedded parallel DSPs (Xilinx Virtex 5 FX series, XC5VFX70T)
- digital level-1 trigger sums
 - pulse height and timing extracted from digitized pulse
 - time alignment to be evaluated \rightarrow current ROD has only asynchronous data transfer
- total latency: 40 bunch-crossings $\rightarrow ~ \sim$ 1 µs < currently allowed 2.5 µs
- more system level tests ongoing (level-1/2 digital buffers on ROD/ROB, remote DMA, ...)

New Readout Electronics for the ATLAS LAr Calorimeter at the sLHC - Arno Straessner

Radiation Hard Front-End Powering

- current power supply scheme:
 - 380 VAC/3 phases \rightarrow 280 V DC \rightarrow DC-DC converter w/ 7 voltages
 - \rightarrow 19 voltage regulators on FEB
- power budget remains approximately the same
- rationalization of the number and levels of the voltages
- use of point of load (POL) regulators
- new LVPS architectures:
 - Distributed Power Architecture
 - main converter + POLs
 - Intermediate Bus Architecture
 - higher main voltage + 2nd bus voltages + POL converters

• 2 POL tested in different positions inside front-end crate (FEC):

- LTM4602 6A High Efficiency DC/DC µModule
- IR3841 Integrated 8A Synchronous Buck Regulator
- noise shielding necessary if inside $\mathsf{FEC} \to \mathsf{ready}$ for radiation tests

- Radiation levels and physics performance at sLHC requires replacement of front-end electronics of the ATLAS Liquid Argon calorimeter
- opportunity to apply modern technology and revise architecture:
 - trigger-less data transfer to off-detector electronics
 - fully digital trigger
- several major R&D challenges:
 - fast, rad-hard preamp, ADC and serial links
 - high bandwidth off-detector readout
- progress in all R&D activities
- more results expected soon, also on radiation and performance tests of recently submitted or received 8RF CMOS, SiGe and SoS chiplets

Preamp and Shaper Prototype Tests

• Test board:

• Preamp

Shaper

- Input
- preliminary linearity measurements:
- goal:
 - < 0.2% non-linearity</p>
 - power ~ 40 mW / preamp
 - ~ 100 mW /shaper
- radiation testing and data analysis is ongoing

New Readout Electronics for the ATLAS LAr Calorimeter at the sLHC - Arno Straessner

Digital Test of the Front-End

• 2 independent clocks

- "TTC"-like clock for ADC and ADC multiplexer
- crystal derived clock for high speed components (MUX, serializer)
 → provides much better jitter control
- Gray code control to manage multiplexer addresses
 - minimize effect of upsets
- data spends less than 8 bunch crossings in ADC multiplexer
 - minimize upsets
- triple redundant MUX
- 8B/10B encoding at level of the serializer
- full DAQ chain tested with commercial components and debugged successfully

Link On Chip Prototype #1 (LOC1)

- output rate at 2.5 Gb/s with 62.5 MHz reference clock
- power consumption ~200mW
- large jitter is observed and understood
 - deterministic jitter from 4-arm 2-stage MUX serializer
 - random jitter comes mostly from the PLL
 - will be corrected in the second prototype \rightarrow LOC2
 - best BER reached ~10⁻¹¹
- SEE test with 200 MeV proton beam
 - error free for a fluence of 9x10⁹ p/cm²
 - SEE cross section less than 10⁻¹⁰cm² (p)
 - less than 1 error/link/h at sLHC
 - data analysis is ongoing and more tests are needed

Eye diagram of a 2^7 -1 pseudo random input data, UI = 400ps

High Performance Digital Readout

- AdvanceTCA 8U Module
 - fabric interface to implement 1/10 Gbit Ethernet, RapidIO or PCI Express protocol
 - update channel to facilitate the communication between adjacent modules
 - rear transition module interface for off-crate communication
- Xilinx Virtex 5 FX series FPGA (XC5VFX70T)
 - 6.5 Gbps RocketIO GTX transceiver
 - PowerPC 440 microprocessor up to 550MHz operation
 - 550MHz DSP48E slices
- 75Gbit/s parallel fiber optic transceiver
 - Reflex Photonics 75Gbit/s SNAP 12 InterBOARD parallel fiber optic transmitter and receiver
 - channel data rate of up to 6.25Gbit/s
- expansion slot on board
- ROD injector
 - Altera Statix GX II FPGA is capable of running 6.375 Gbit/s (and more) → next version in AMC mezzanine format
- performance test with previous prototype version:
 - 2.4Gbps link running stably
 - fixed pattern data transmission of 36 channels (over 12 fibers)

ATCA ROD prototype

\rightarrow more tests soon with ATCA-format ROD