




# Development of New Readout Electronics for the ATLAS LAr Calorimeter at the sLHC





Arno Straessner – TU Dresden

on behalf of the ATLAS Liquid Argon Calorimeter Group

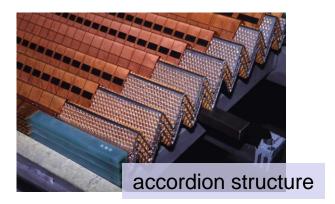
Topical Workshop on Electronics in Particle Physics
Paris
September 21-25, 2009



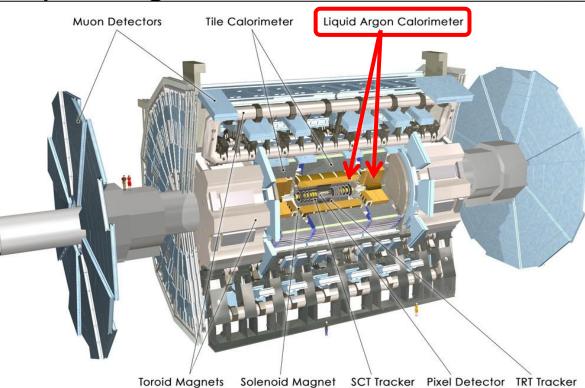
#### Outline

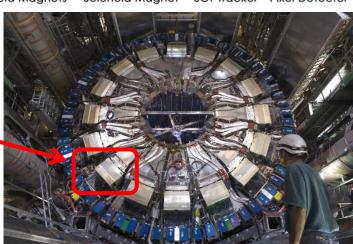


- The ATLAS Calorimeter Readout
- Upgrade Scenario and Readout Architecture for the sLHC
- Radiation Hard Front-end Electronics
- High Bandwidth Back-end Electronics
- Outlook




# The ATLAS Liquid Argon Calorimeters





4 high granularity LAr calorimeters:

e.m. barrel Pb/LAr
e.m. endcap Pb/LAr
had. endcap Cu/LAr
forward calorimeter Cu/W/LAr



- 182486 readout channels
- 40 MHz proton-proton collision rate
- front-end and trigger-sum electronics
  - → on-detector in radiation environment
- back-end electronics and more trigger logic
  - → shielded counting room



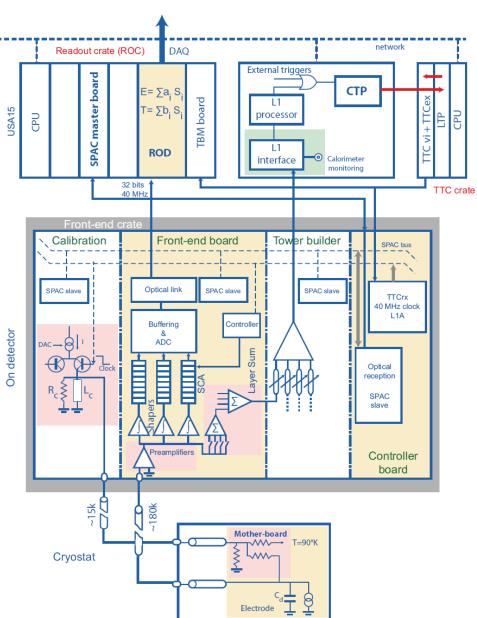




# Current Layout of the Calorimeter Readout



- 1524 front-end boards (FEB)
  - → up to 128 channels
  - → preamp, pulse shaping, buffer and sampling
- in 58 front-end crates
  - → low-voltage power supplies (LVPS)
- connected to off-detector electronics by 1600 optical links

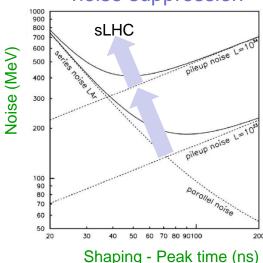

Optical links

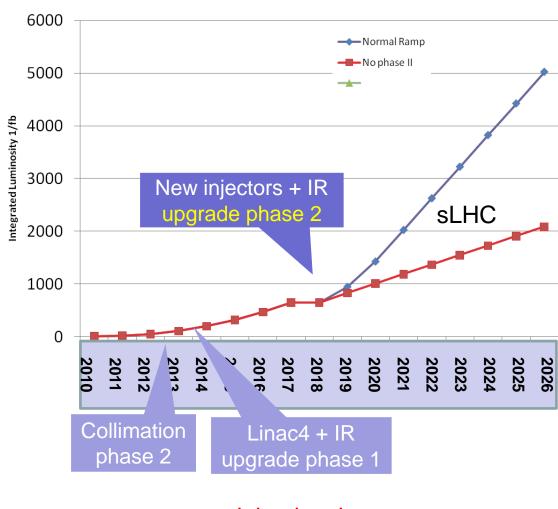


- 192 read-out driver boards (ROD)
  - → digital filter
- 800 optical links to DAQ PCs



- 68 read-out system PC's (ROS)
  - → DAQ and high-level trigger buffer




### Upgrade to super-LHC

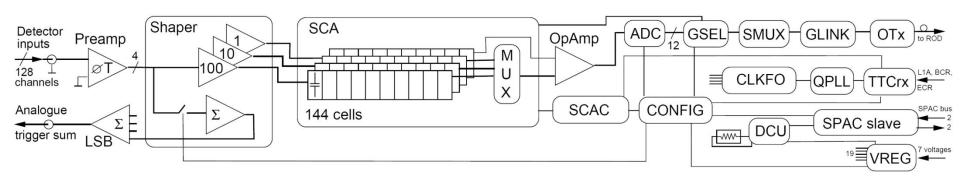


- LHC upgrade in 2 phases
  - sLHC starts in ~2019/20
- sLHC challenges
  - 10x more radiation
  - up to 20 times more pile-up events
- readout challenges
  - → rad. hardness
  - → same power consumption
  - → same physics performance
    - same dynamic range
    - noise suppression





peak luminosity:


 $10^{34} \text{ cm}^{-2}\text{s}^{-1} \rightarrow 3 \text{ x } 10^{34} \text{ cm}^{-2}\text{s}^{-1} \rightarrow 10 \text{ x } 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ 

new calorimeter readout for 2019/20



#### **Current Front-End Limitations**

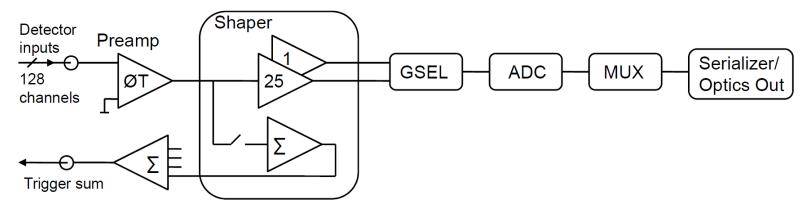




- complex board architecture:
  - 11 ASICs with different technologies
    - some obsolete (DMILL, ...)
  - 19 voltage regulators
  - analog pipelines (SCA)
  - 80 W/board
  - water-cooled
- main concern:
  - qualified for 10 years of normal LHC operation (incl. safety factors)
  - sLHC: 300 Krad and 10<sup>13</sup> neq/cm<sup>2</sup>
  - small number of spares (6%)

- performance limitations:
  - level-1 trigger rate only up to 100 kHz
  - max. latency 2.5 μs
  - min. level-1 intervals 125 ns
  - fixed analog trigger sums (8-32 channels/trigger tower)

#### LHC Radiation Tolerance Criteria


| Radiation |                                    | Estimated            | DMILL                | Commercial Process   |
|-----------|------------------------------------|----------------------|----------------------|----------------------|
| Type      | Units                              | Level                | RTC                  | RTC                  |
| TID       | Gy                                 | 50                   | 525                  | 1700                 |
| NIEL      | 1 MeV equiv. n/cm <sup>2</sup>     | $1.6 \times 10^{12}$ | $1.6 \times 10^{13}$ | $1.6 \times 10^{13}$ |
| SEE       | Hadrons (> 20 MeV)/cm <sup>2</sup> | $7.7 \times 10^{11}$ | $7.7 \times 10^{12}$ | $7.7 \times 10^{12}$ |

- replacement of single components impossible
- → new front-end boards based on today's technology with same power budget



# New Front-End Prototype Design





- evaluate different options:
  - shaper and gain settings

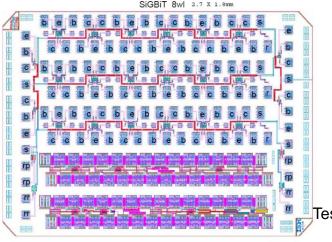
  - on-detector ↔ off-detector pipeline

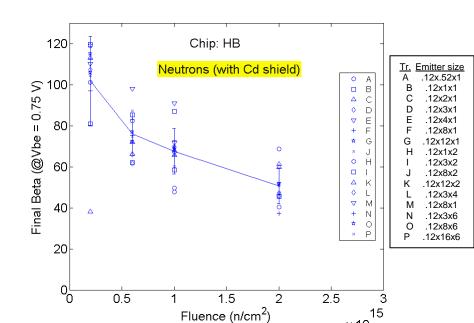
  - analog trigger sums
     → possibility to keep current level-1 trigger system

- R&D baseline:
  - shaping and digitization at high rate
    - → 128 channels at 40 MHz
  - transfer rate → 100 Gb/s per FEB
  - rad. hard optical links at ~10 Gb/s
  - fully digital off-detector trigger
    - → digital pipeline on ROD
    - → trigger sums on ROD and calorimeter trigger
    - → more flexible and higher trigger granularity



#### Analog Front-End R&D





- SiGe IBM 8WL BiCMOS process (0.13 micron)
  - technology also studied for ATLAS silicon strip tracker readout and ILC detectors
- irraditation tests with spare IBM test structures
- example: final gain after neutron irradiation:
  - β>50 at 10<sup>14</sup> neq/cm<sup>2</sup>
  - dispersion due to irregular test structure

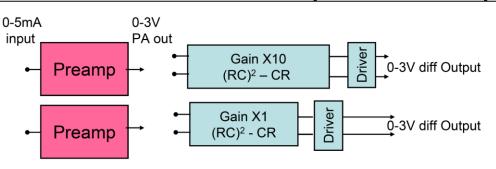
own chiplet submitted end of 2008

irradiation program finished and data is being

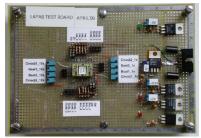
analysed

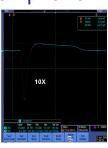


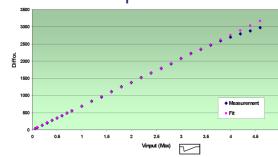



Test Structure Chiplet 2.7mm x 1.8mm

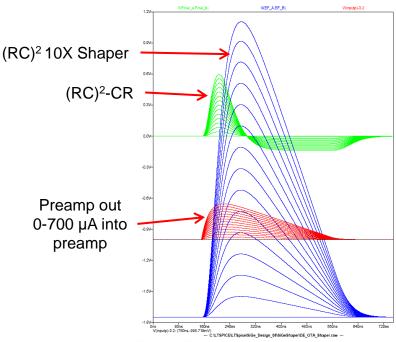
x 10

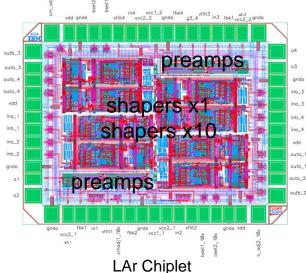




# Preamp and Shaper Prototype







- Preamp
  - low noise ~0.25nV/√Hz, high dynamic range
  - based on low noise line-terminating preamplifier circuit topology presently used in ATLAS LAr calorimeter
- Shaper
  - fully differential
  - robust performance in low signal environment, excellent pickup rejection on and off chip
- < 0.2% non-linearity
- power ~ 40 mW / preamp and ~ 100 mW /shaper



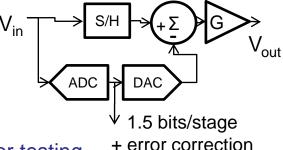





see: Parallel session A2 – ASICs – Mitch Newcomer





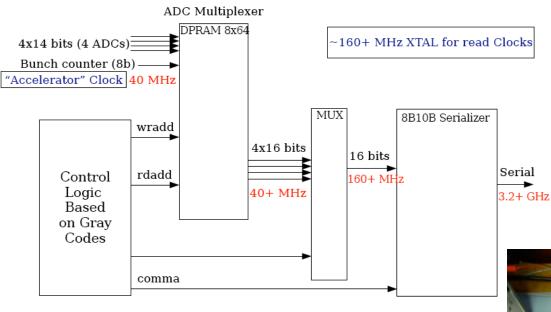

2mm X 2mm

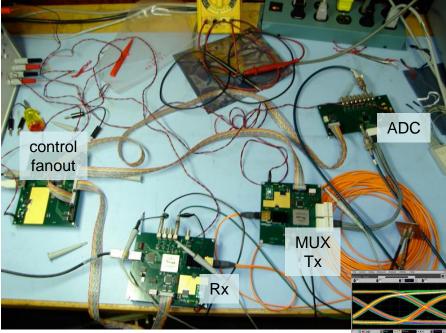


# Mixed-Signal Front-End ADC



- ADC is the most challenging component in the new "baseline" architecture
  - 15(16) bit dynamic range 12 bit resolution 40 MSPS
  - radiation tolerant and immune to single event effects (SEE)
- R&D strategies:
  - evaluate commercial parts
    - planning to test several COTS ADCs:
      - AD9259 (14/12 bit), ST-RHF1201 (12 bit), TI ADS5281 (12 bit)
  - development of a custom ADC
    - started with IBM 8HP SiGe → 8RF CMOS is now the candidate technology
    - shown to be radiation hard
    - lower cost compared to SiGe
- 12 bit pipeline ADC with 1.5 bits/stage and digital error correction
  - on-board correction will require rad-hard redundant memory for calibration constants
- main building blocks of custom pipeline ADC:
  - operational trans-impedance amplifier (OTA)
  - core for the S/H and Multiplying DAC subsystems
  - S/H capacitor important since noise ~ √kT/C





- chiplet submitted to CERN/MOSIS with OTA + cascade of 2 T/H for testing
- expected back by late October



# Digital Test of the Front-End



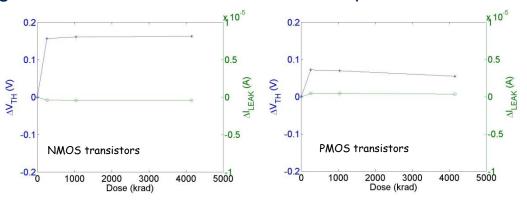


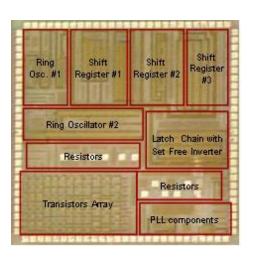




### Raditation Hard Optical Links




n-channel FET


insulating sapphire substrate

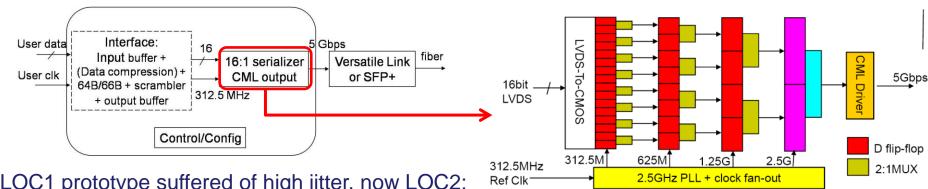
- Silicon-on-Sapphire (SoS) technology:
  - 0.25 µm UltraCMOS by Peregrine Semiconductors
  - low power, low cross talk → good for mixed-signal ASIC designs
  - economical for small to medium scale ASIC development



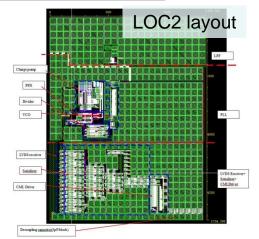
gamma irradiation with <sup>60</sup>Co source up to 4 Mrad

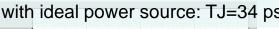





UltraCMOS Process

- with grounded substrate: small leakage currents (250 nA) and small threshold voltage increase
- irraditation in 230 MeV proton beam
  - no SEE observed in shift registers at a flux of 7.7×10<sup>8</sup> proton/cm<sup>2</sup>/sec
  - still correctly functioning after total fluences of 1.9×10<sup>15</sup> p/cm<sup>2</sup> (106 Mrad(Si))





# Link On Chip Prototype #2 (LOC2)

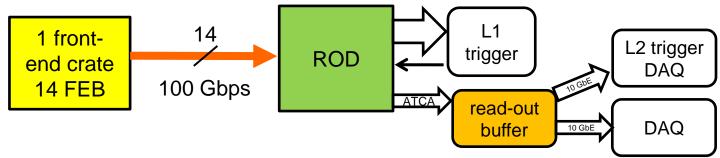




- LOC1 prototype suffered of high jitter, now LOC2:
- 5 Gbps 16:1 serializer
  - 3 stages of 2:1 MUX
  - last stage: 2 fast transmission gate D-flip-flops
- input data and ref. clock in LDVS
- output in CML at 5 Gbps → CERN Versatile Link
  - · Parallel Session B5 Optoelectronics and Links: Paulo Moreira, Jan Troska
- transmission bit error rate lower than 1x10<sup>-12</sup>
- power consumption is below 500 mW or less than 100 mW/Gbps.
- post-layout simulation show that critical components meet LOC2 requirements (PLL, DFF, CML driver)
- user interface will be implemented in FPGA for tests
- effort towards a 5 GHz LC-tank based PLL:
  - random jitter < 1 ps (RMS) achieved in simulations</li>
  - needed for ultimate goal of a ~10 Gbps link










#### Readout Driver Upgrade



- 218 RODs in non rad-hard environment
- 1524 FEBs x 100 Gbps continuous data stream → 150 Tbps



12-fiber optical connectors

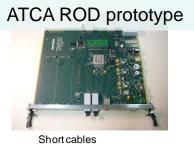


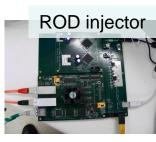
MPO/MTP style → each 100 Gbps

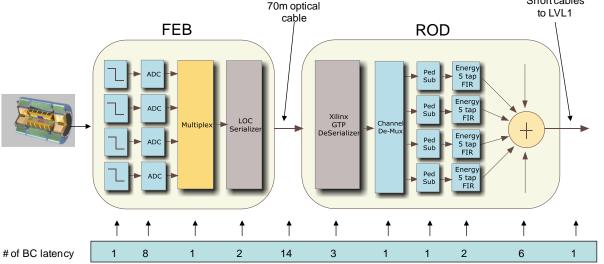
- Xilinx & Altera FPGA embedded SERDES
- evaluate reduction of number of links by
  - latency lossless data compression/decompression algorithm
  - less bits at ADC

front-end challenges

- FPGA based Digital Signal Processing
  - advantage of parallel data processing
- system level architecture: AdvancedTCA
  - take the advantage of industrial standard
  - shelf management protocols, power management, fast fabrics
- perform level 1 trigger sum digitally
  - flexible and fine granularity





#### High Performance Digital Readout



- ROD prototypes with Xilinx Virtex 5 FX (XC5VFX70T)
- 75Gbit/s fiber optic transceiver Reflex Photonics + SNAP 12
- ROD injector test with Altera Statix GX II
- 6.5 Gbps/fiber transfer rate possible
  - → with previous prototype: stable 2.4 Gbps/f. on 12 fibers



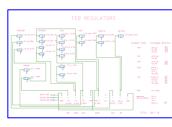


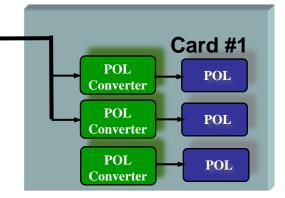


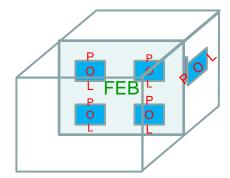
- digital linear FIR filter → FPGA embedded parallel DSPs (Xilinx Virtex 5 FX series, XC5VFX70T)
- digital level-1 trigger sums
  - pulse height and timing extracted from digitized pulse
  - time alignment to be evaluated → current ROD has only asynchronous data transfer
- total latency: 40 bunch-crossings  $\rightarrow$  ~ 1  $\mu s$  < currently allowed 2.5  $\mu s$
- more system level tests ongoing (level-1/2 digital buffers on ROD/ROB, remote DMA, ...)



### Radiation Hard Front-End Powering





- current power supply scheme:
  - 380 VAC/3 phases  $\rightarrow$  280 V DC  $\rightarrow$  DC-DC converter w/ 7 voltages
    - → 19 voltage regulators on FEB
- power budget remains approximately the same
- rationalization of the number and levels of the voltages
- use of point of load (POL) regulators
- new LVPS architectures:
  - Distributed Power Architecture
    - main converter + POLs
  - Intermediate Bus Architecture
    - higher main voltage + 2<sup>nd</sup> bus voltages + POL converters






- 2 POL tested in different positions inside front-end crate (FEC):
  - LTM4602 6A High Efficiency DC/DC μModule
  - IR3841 Integrated 8A Synchronous Buck Regulator
- noise shielding necessary if inside FEC → ready for radiation tests









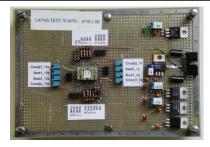
# Summary and Outlook



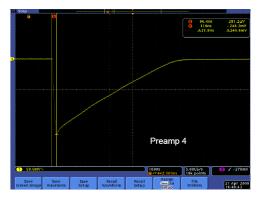
- Radiation levels and physics performance at sLHC requires replacement of front-end electronics of the ATLAS Liquid Argon calorimeter
- opportunity to apply modern technology and revise architecture:
  - trigger-less data transfer to off-detector electronics
  - fully digital trigger
- several major R&D challenges:
  - fast, rad-hard preamp, ADC and serial links
  - high bandwidth off-detector readout
- progress in all R&D activities
- more results expected soon, also on radiation and performance tests of recently submitted or received 8RF CMOS, SiGe and SoS chiplets

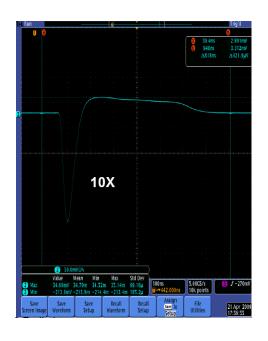


# Backup

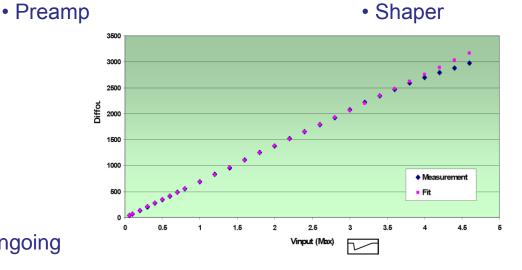






#### Preamp and Shaper Prototype Tests




Test board:

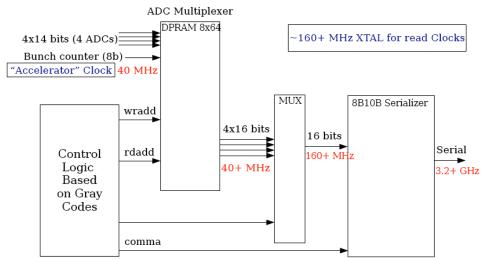


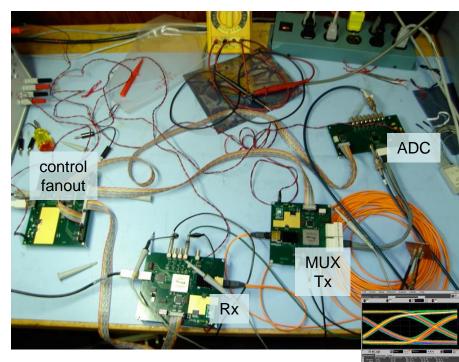







- Input
- preliminary linearity measurements:
- goal:
  - < 0.2% non-linearity
  - power ~ 40 mW / preamp~ 100 mW /shaper
- radiation testing and data analysis is ongoing

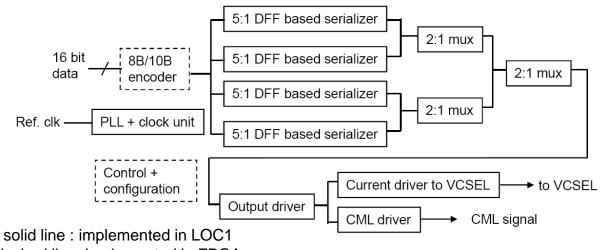



#### Digital Test of the Front-End



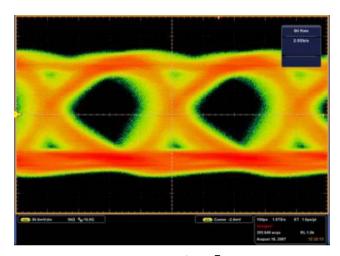
- 2 independent clocks
  - "TTC"-like clock for ADC and ADC multiplexer
  - crystal derived clock for high speed components (MUX, serializer)
    - → provides much better jitter control
- Gray code control to manage multiplexer addresses
  - minimize effect of upsets
- data spends less than 8 bunch crossings in ADC multiplexer
  - minimize upsets
- triple redundant MUX
- 8B/10B encoding at level of the serializer
- full DAQ chain tested with commercial components and debugged successfully








# Link On Chip Prototype #1 (LOC1)





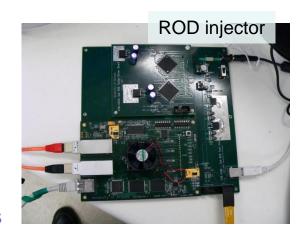

Standard-alone
Ring-Type
Link-PLI
Standardalone
LC-tank
-PLL

dashed line: implemented in FPGA

- output rate at 2.5 Gb/s with 62.5 MHz reference clock
- power consumption ~200mW
- large jitter is observed and understood
  - deterministic jitter from 4-arm 2-stage MUX serializer
  - random jitter comes mostly from the PLL
  - will be corrected in the second prototype → LOC2
  - best BER reached ~10<sup>-11</sup>
- SEE test with 200 MeV proton beam
  - error free for a fluence of 9x10<sup>9</sup> p/cm<sup>2</sup>
  - SEE cross section less than 10<sup>-10</sup>cm<sup>2</sup> (p)
    - less than 1 error/link/h at sLHC
  - data analysis is ongoing and more tests are needed



Eye diagram of a  $2^7$ -1 pseudo random input data, UI = 400ps




# High Performance Digital Readout



- AdvanceTCA 8U Module
  - fabric interface to implement 1/10 Gbit Ethernet, RapidIO or PCI Express protocol
  - update channel to facilitate the communication between adjacent modules
  - rear transition module interface for off-crate communication
- Xilinx Virtex 5 FX series FPGA (XC5VFX70T)
  - 6.5 Gbps RocketIO GTX transceiver
  - PowerPC 440 microprocessor up to 550MHz operation
  - 550MHz DSP48E slices
- 75Gbit/s parallel fiber optic transceiver
  - Reflex Photonics 75Gbit/s SNAP 12 InterBOARD parallel fiber optic transmitter and receiver
  - channel data rate of up to 6.25Gbit/s
- expansion slot on board
- ROD injector
  - Altera Statix GX II FPGA is capable of running 6.375 Gbit/s (and more) → next version in AMC mezzanine format
- performance test with previous prototype version:
  - 2.4Gbps link running stably
  - fixed pattern data transmission of 36 channels (over 12 fibers)





→ more tests soon with ATCA-format ROD