LAPAS: A SiGe Front End Prototype for the Upgraded ATLAS LAr Calorimeter

Mitch Newcomer On Behalf of the ATLAS LAr Calorimeter Group*

*Special Acknowledgment of the significant contributions of Emerson Vernon, Sergio Rescia (BNL) and Nandor Dressnandt (Penn) to this work.

FEE Design Constraints / Goals for a LAr Barrel Calorimeter at SLHC

Physics Requirement •Dynamic energy range: 20MeV - 2 TeV, •Good energy resolution •Minimize Pileup

Drift time 400ns. Signal 25ns rise (1nF 25Ω rin), 400ns fall. Readout Dynamic Range ~16 Bits Noise referred to input. ENI < 75nA RMS

FEE **Rad Tolerance** TID~ 300Krad, Neutron Fluence ~10¹³ n/cm²

SiGe Bipolar Technology

Strained Lattice (Si-Ge)

- Epitaxial Ge film in base layer.
- Increases base emitter band gap for holes.
- Improves Radiation Tolerance.
- Reduces recombination in the base.
- Increases mobility \rightarrow High f_t
- Excellent Low temp gain stability.
- Allows higher doping in base. Lowers rbb'

*SiGe technology was first introduced to the HEP community by John Cressler : Assessing SiGe HBT Technology For Front-end Electronics Applications 5th International Meeting on Front-end Electronics Snowmass, CO, June 2003

IBM 8WL SiGe BiCMOS

Pro's

- Excellent Bipolar Analog performance. Possible to use Vdd > 5V
- Excellent radiation hardness well beyond requirement.
- IBM support for the foreseeable future (> 5 years)
- CMOS Digital Libraries in use for other CERN projects should be available for use with these BiCMOS processes.
- 8WL is the least expensive 130nm SiGe bipolar process available from IBM.

Con's

- No PNP's. Must use PMOS.
- Complex process design rules.
- Potential increased (npn) SEU susceptibility compared with 8HP
- More complex process than CMOS which has a significant cost premium. (May be reduced as competitive processes come online.)

FEE LAr Signal Processing

Shaping Primarily dependent on ASIC Passive elements

Predicted Precision of SiGe Process Passive Shaping Elements

Calculated Shaper Signal Variation Due to Spread in Passive Shaping Elements

 \rightarrow May not be necessary to tune each channel to stay within a 5% Channel to Channel gain requirement for trigger sums.

SiGe LAr Preamp (Rin=25Ω)

- Based on low noise line-terminating preamplifier circuit topology presently used in ATLAS LAr
- SiGe higher base doping \Longrightarrow lower r_{bb} , for low noise
- "high breakdown" (V_B=3.6 V devices allow for higher swing to accomodate full 16-bit dynamic range
 - thick "analog" metal allows for low resistance connections to input, E₁
 - BJTs are excellent drivers: output current ~170mA at I_{in}=5mA
 - $e_{n,equiv}=0.26 nV/\sqrt{Hz}$
 - ENI=73nArms (incl. 2nd stage, C_d=1nF)
 - P_{tot}=42 mW

Operational Characteristics

(Simulation Results)

Real Zin

Transfer Function

Calculated Preamp and Shaper Noise Contributions

Noise Summary (>1% contributions, incl 2nd stage noise, 2nV/Sqrt(Hz))

Device	% Of Total	Inp Ref Noise P	aram	Noise Contribution	
Ql.q	55.10	0.000404166	total	1.08042e-05	Q1+feedback=71%
			itzf	8.03375e-06	
			rbx	5.79295e-06	
			ibe	2.87805e-06	
			rbi	2.6965e-06	
			re	1.75006e-06	2nd Stage=9%
/Rnoisesheq	8.70	0.0077712	rn	4.29214e-06	2nu Stage-770
RF1.rmb	4.65	1.32473e-05	rn	3.1375e-06	
RF1.rma	4.65	1.32473e-05	rn	3.13749e-06 160%	
RF1.reb	3.47	1.1451e-05	rn	2.71207e-06	
RF1.rea	3.47	1.1451e-05	rn	2.71207e-06	
/Q3	2.90	0.00187966	total	2.4802e-06	
			id	2.33136e-06	
			fn	8.1065e-07	
			rs	2.42875e-07	
Rgain.rmb	2.86	2.63272e-05	rn	$2.46295e^{-06} = 70/$	
Rgain.rma	2.86	2.63272e-05	rn	2.46295e-06 3.1 %	
RC1.rmb	1.75	2.06787e-06	rn	1.92389e-06	
RC1.rma	1.75	2.06787e-06	rn	1.92389e-06 4.1%	
Q2.q	1.51	7.85253e-05	total	1.78959e-06	
			itzf	1.17054e-06	
			ibe	1.14894e-06	
			rbx	6.51697e-07	
			rbi	2.60069e-07	
			re	1.39711e-07	
RE2stab.rma	1.18	4.06117e-06	rn	1.58407e-06 7 10/	
RE2stab.rmb	1.18	4.0455e-06	rn	1.58406e-06 52.470	
RE2.rma	0.52	2.40409e-05	rn	1.05455e-06 1 0/	
RE2.rmb	0.52	2.40409e-05	rn	1.05455e-06 1 70	

Integrated Noise Summary (in V) Sorted By Device Composite Noise Total Summarized Noise = 1.45553e-05 Total Input Referred Noise = 0.00914256

ENI= 14.55uVrms * 5mA/1V= 73nArms

(Preamp ENI = 66.4nA)

Preamplifier Equivalent Input Series Noise Spectrum (Calculated)

11

Prototype Shaper Design Goals

- 2.2nV / \sqrt{Hz} (Adds 10% to Preamp noise)*
- 15 16 bit Dynamic range, Less than .1% INL* (Necessary to use Dual or Triple ranges)
- Low Power 100 200 mW*
- Part to part amplitude variation < 5%
- Should be easily matched to a differential ADC

Shaper Blocks

Input OTA Block

Voltage output Driver

Common Mode Amp

Used to set Common Mode voltage at output of Op Amp. **OTA** outputs PPA **OTA Out** Common R9 40k R8 40k Reference Qdf_CMa2 Mode Point npn_sg R10 20k ODF_A-ODF_B-Voltage Qdf_CMa3 CCM anda npn_sg Qdf CM1 Qdf_CMa1 npn_sg Qdf_CMb1 Qdio_CM1 npn_sg npn_sg Vhalf npn_sg gnda-R6 R7 Qdio_hf1 anda 10k R11 50k gnda gnda gnda pn_sg gnda C2 5p npn_sg npn_sg UCS_2 UCS_1 npn_sg UCS_3 R13 R15 **R**3 bias1 anda **1**00 gnda anda M 100 100 115uA 2500 140uA 2000 R16 2500 115uA gnda

Open Loop Response Layout Extracted AC OPAmp (Includes external 5pF feedback caps) dB(V): f(Hz)60.0 150.0 v(outa,outb) (192240.0, 51.277) () Gain ~350 Phase(deg) : f(Hz) 40.0 100.0 v(outa,outb) 20.0 -50.0 Phase(deg) dB(V) ۲ 0.0 0.0 (530.13meg, 1.1881) (1.0191meg, -45.159) 0 -20.0 -50.0 Phase

10meg

f(Hz)

100meg

1g

-40.0

-100.0

100.0k

1meg

Circuit Blocks LAPAS

4 Preamps, 2 Shapers (1X & 10X)

Measurements with Hand Wired Board

Handiwork of Godwin Mayers, Penn

Test Signal Input Attached to Shaper

Lecroy 9210

Pulser: 12ns Rise 20ns width 400ns fall Amplitude Setting: 1V Shaper tests

Shaper input Shown = 5:1Atten

Preamp V \rightarrow I = 5.1k

AC coupled

Preamp Output Ch 4

Shaper 1X output Expected (RC)² – CR Shaping

Individual Differential Outputs A, B AC coupled

Out A – Out B

37ns Peaking time

1X and 10X Shaper Output #2

14.1mV and 153mV peak 38ns Rise

24

LAPAS ASIC Automated Linearity Measurement

Using AFG3252 & MSO4401

LAPAS ASIC Automated Linearity Measurement Using AFG3252 & MSO4401 Shaper Input Signal 1X Differential Output vs Input Chip 1, Ch3 Tek "M. 🖬 Trigʻd M Pos: 452.0ns CURSOR Type **Lime** 2.5 Source CH1 Design Range 0 - 3V input Differential 2 1.5 Cursor : 552ns –8.00m Gain 0.625 M 100ns 1 Tek MEASURE П M Pos: 440.0ps Vout CH2 Off 0.5 0 1.5 0.5 2.5 3 0 1 2 3.5 4 1X Shaper (Deviation from Linear / 3V FS range)X100 M 100ns 10-Apr-09 17:44 CH2 _ -46 89.9230kHz LAPAS Shaper Output 0.3 Measured RMS Deviation (0-3V input) 0.04 % **Pulser Pre-Calibration Percent** 0.2 **Deviaton from Linear** % **Deviation** 0.1 0.8 0.7 Percent Deviati 1X Settings 0 0.6 1.5 3.5 2.5 0.5 0.4 -0.1 Ran 0.3 INL = .06% over 3V range 0.2 -0.2 0.1 XO <u>_</u> -0.3 3 2 0 4 Calibrated Pulser Input (V) **Pulser Setting**

Shaper Uniformity across all tested Chips

27

Gamma Irradiation

BNL source used to irradiate 3 LAPAS ASIC's to 1MRad in three steps

Conclusions With Hand Wired Prototype

- DC results very close to Simulations.
 - Transfer gain (Vout / lin) Measure 5.1K Nominal Sim 5.2K
 - Peaking time 37ns as predicted.
- Preamp Transient response Good Ch 3,4 .
 - \rightarrow Need to understand Ch1, Ch2 oscillation.
- No Shaper Control Tuning reqd.
- Shaper Transient response, Good.
- Common Mode Auto-Tracking Excellent.
- Meas. Shaper Noise (10x) ~130uV of 3V Output range.

ENI ~ 34nA (11% of total noise)

- Integral Non Linearity \rightarrow Less than 1% over FS 1X and 10X
- Dynamic Range \rightarrow As Designed.
- Ch to Ch uniformity \rightarrow Better than 5% across 17 tested ASIC's.
- Shaper Power = 26.2mA*5V = 130 mW (combined 1X, 10X channel)
- No significant concerns about first lonizing Radiation results.

Next Steps for Prototype Evaluation

- PC Board being Stuffed → Reduce hookup parasitics to improve testability of preamp.
- Test Preamp with existing LAr FEE.
- Preamp / Shaper tests with Prototype ADC.
- Finish Radiation Hardness Evaluation (protons, neutrons).

Support Slides...

Additional Measurements

1nF Detector Capacitance Preamp and 10X Shaper

Preamp and Shaper Response with 0 and 1nF Input Capacitance

Extracted Netlist Simulation

(1nf Detector Capacitance Included)

Translinear Shaper Structures

Process Variation MC

Extracted Netlist (no 1nF Detector Capacitance)

