

AGENCE NATIONALE DE LA RECHERCHE

PARISROC Photomultiplier ARray Integrated in Sige Read Out Chip

Selma Conforti Frédéric Dulucq Mowafak El Berni Christophe de La Taille Gisèle Martin-Chassard Wei Wei * conforti@lal.in2p3.fr http://omega.in2ppp3.fr

- PARISROC description
 - Measurements
 - Conclusion

<u> Mega</u>

PMm²: Innovative electronics for array of photodetectors used in High Energy Physics and Astroparticles.

R&D program funded by French national agency for research (ref. ANR-06-BLAN-0186) (LAL, IPNO, LAPP, ULB Bruxells and Photonis) (2007-2010)

• Application : large water Cerenkov neutrino detectors (more generally: exp. with large number of PMTs)

mega

PMm² Project (II)

- The project proposes to segment the very large surface of photodetection in macro pixels made of 16 photomultiplier tubes connected to an autonomous front-end electronics.
- Replace large PMTs (20 inch) by groups of 16 smaller ones (12 inch) with central ASIC :
 - Independent channels
 - charge and time measurement
 - water-tight, common High Voltage
 - Only one wire out (DATA + VCC)

Target :

TWEPP 09

- 1pe efficiency
- Triggerless acquisition
- Ins time resolution

Low cost:

- High granularity
- scalability

Common HV for 16 PMTs
Common electronics for 16 PMTs
Front-end closed to the PMTs array

PARISROC architecture

One channel analog part

114

Digital part architecture(I)

- 16 channels managed independently
- 2 state machine dedicated to handle one channel: Write and Read
- SCA depth of 2 for time and charge measurement
- SCA management like FIFO
- 24bits Timestamp counter (a) 10 MHz (1.67s)
- 32 registers of 24 bits to save coarse time for each depth of SCA
- 32 registers of 12 bits to store converted data: 16 charge and 16 fine time
- 40 MHz clock for ADC + SCA management
- 10 MHz clock for Timestamp + Readout

Digital part architecture(II)

- 4 modules: Acquisition, Conversion, Read Out and Top manager.
- Acquisition: Analog memory
- Conversion: Analog charge and time into 12 bits digital value saved in register (RAM)
- Read Out: RAM read out to an external system

Selective Read Out

- Only hit channels are readout
- Readout clock : 10 MHz
- Max Readout time (16 ch hit) : 100 us
- 52 bits of data / hit channel (all gray)
- Readout format (MSB first) : 4 bits channel # +

24 bits timestamp + 12 bits charge +

12 bits time

TWEPP 09

PARISROC layout

<u>Technology :</u> AMS SiGe 0.35mm <u>Size</u> : 5mmX3.4mm <u>Package</u> : CQFP160

<u> Mega</u>

Analog measurements: Preamplifier

1.Preamplifier	Meas.	Sim
RMS NOISE without USB cable	1mV 660uV	468uV
Noise in pe without USB cable	0.2 0.132	0.086
Vout(1pe)(G_pa=8)	5mV	5.43mV
SNR without USB cable	5 7.6	11.6

Gain uniformity for all channels (Vmax_pa vs Channels; CF var; Cin=4pF); 100 pe input.

PA_GAIN	Mean(mV)	Rms(%)
8	609.94	0.5
4	353.19	1.4
2	183.69	1.2

TWEPP 09

Slow Shaper

1. Slow shaper (50ns)	Meas.	Sim	
RMS NOISE	4mV	2.3mV	
Noise in pe	0.3	0.125	
Vout(1pe)(G_pa=8)	12mV	19mV	
SNR	3	8	

Extra noise sources:

- 10 MHz Clock : doubles the noise
- Low frequency noise

SSH Linearity better then 1% at high preamplifier gain.

Fast shaper and discriminator Omega

3. Fast shaper (G_pa=8)	Meas.	Sim
RMS NOISE	2.5mV	2.36mV
Noise in pe	0.08	0.06
Vout(1pe)(Gpa=8)	30mV	39mV
SNR	12	16

Pedestal spread better than 0.1 pe.

TWEPP 09

10 bit DAC Linearity

	Residuals(%)
DAC1_Chip1	-0.1 to 0.1
DAC2_Chip1	-0.1 to 0.1

DAC1_LINEARITY_CHIP1

Linearity at 0.1%

<u> Mega</u>

Internal Wilkinson ADC (II) (mega

- The ADC is suited to a multichannel conversion
- •Very good uniformity and linearity

0

Selma CONFORTI DI LORENZO

Input num pe

14 16 18 20

12

22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

TWEPP 09

Conclusion and next steps

- Good Overall performance of PARISROC.
- Autotrigger and internal digitization;
- Very good uniformity and linearity;
- Extra noise source :
 - 10 MHz Clock double the noise, Low frequency noise.
- A second version will be done in November 09.
- Possible PMT gain increasing ;
- Increase dynamic range with 2 gain ;
- 8, 9, 10 bit ADC to reduce dead time ;
- Double fine TAC.

• Chip being evaluated by several experiments: Memphys, DUSSEL, LENA...... mega

<u> Mega</u>

	С	osts		<u> (mega</u>
Size (Diameter)	20	20(17)	12	Inch
Photocathode area	1660	1450	615	cm ²
Quantum efficiency	20	20	24	%
Collection efficiency	60	60	70	%
Cost	2500	2500	800	€
	12.6	14.4	7.7	€ /PE _U /cm ²
	<u>Cost/c</u>	<u>m² per usetul</u> Cost / (cm² x G	E × CE)	ctron
12" is better in SER	and timing	12" pro	ovides a hig	gher granularity
	But, th	e number of cho	nnels is inc	creased

Clock Noise

<u>Channel 9</u>

Without Clock	With 40 MHz Clock	With 10 MHz and 40 MHz Clock
Rms noise ssh	Rms noise ssh	Rms noise ssh
2.6mV	3mV	5mV

Channel 1

With 10 MHz and 40 MHz Clock
Rms noise ssh
10mV

0.4 mV of noise due to 40MHz Clock And 2mV noise due to 10MHz Clock

()mega

- Rms noise is bigger with Clocks in particular with 10MHz Clock
- Clk noise is progressively smaller from Channel 1 to Channel 16
- Clk noise is smaller with smaller preamplifier gains

Discriminator coupling

- 6 bits,
- Span : 30-200 ns
- step : 3 ns
- Linearity : 1%
- Jitter 150-450 ps

ADC DNL

Preliminary results Differential non linearity (DNL): from -1 to 0.65 for the 10 bit ADC from -0.3 to 0.2 for the 8 bit ADC

Selma CONFORTI DI LORENZO

6.0x10⁻³

<u>()mega</u>

• Top manager module controls the 3 other ones: Acquisition, Conversion, Read out.

•When 1 or more channels are hit, it starts ADC conversion and then the readout of digitized data.

•The maximum cycle length is about 200 µs.

• During conversion and readout, acquisition is never stopped.