KM3NeT

Power and Submarine Cable System for the Cubic Kilometer Neutrino Telescope

M. Sedita INFN-LNS on behalf the KM3NeT Collaboration

EU FP6 Design Study KM3NET Project

Collaboration of 10 Countries, 41 Institutions

- <u>Cyprus:</u> Univ. Cyprus
- France: CEA/Saclay, CNRS/IN2P3 (APC Paris, CPP Marseille, IreS Strasbourg), Univ. Haute Alsace/GRPHE, IFREMER
- Germany: Univ. Erlangen, Univ. Kiel, Univ. Tübingen
- Greece: HCMR Anavissos, HOU Patras, NCSR Athens, NOA/Nestor Athens, Univ. Athens
- Ireland: DIAS Dublin
- Italy: CNR/ISMAR, INFN (Bari, Bologna, Catania, LNS Catania, LNF Frascati, Genova, Messina, Pisa, Roma-1), INGV, Tecnomare SpA. Netherlands: NIKHEF/FOM, Univ. Amsterdam, Univ. Utrecht, KVI/Univ. Groningen, NIOZ
- Spain: IFIC/CSIC Valencia, Univ. Valencia, U.P. Valencia
- United Kingdom: Univ. Leeds, Univ. Sheffield, Univ. Liverpool, OceanLab (Univ. Aberdeen)

Aim to design a deep-sea km³-scale observatory for high energy neutrino astronomy and an associated platform for deep-sea science

Request funded for 3 years - end product will be a TDR for KM3 in the Mediterranean Sea

WORK PACKAGES	Astroparticle Physics	Physics Analysis and Simulations	System and Product Engineering	
	Information Technology	Shore and deep-sea structure	Sea surface infrastructure	
	Risk Assessment Quality Assurance	Resource Exploration	Associated Science	
_	A TDR for a Cubic Kilometer Detector in the Mediterranean			

KM3NeT

Mediterranean Neutrino Sites

Wen Bratislava

Zegreb

The Mediterranean Sea offers optimal conditions

- Water quality, depth, temperature, ...
- existing infrastructure
- current expertise for sea water
 v telescopes concentrated in
 European countries
- a perfect stage for a large Europe-led science project

100

Napoli

Thessaloniki

PELOPONNESOS

NESTOR Depth 4.500-5.000m

Palerme

SICILIA

EMNEMO Test Site Depth 2.100 m

> NEMO Phase 2 Depth 3.500 m

Detection Unit Structure (up to 150 anchored to sea floor power distribution network)

Tower Structure

String Structure

Main Considerations

Submarine Electro-Optical Cable Requirement
On Shore Energy Power Requirement
Cable Deployment Activity
Off Shore Energy Power Conversion
Subsea Distribution Network
Electro-Optical Submarine Connection Systems
Installation and Maintenance Issue

Estimated power for the km³ included Sea Science nodes ≈50 kW

M. Sedita TWEPP-09 Paris 21-25/September 2009

AC/DC Comparison

ACThree-phase 3x50 mm²

Power loss kW 150 230kW to transmit 80kW Voltage drop kV 3.5 Required supply voltage kV 5.5

DC Bipolar 4x35mm²

Power loss kW 85 165kW to transmit 80 kW Voltage drop kV 2.1 Required supply voltage (DC) kV 4.1

DC Monopolar

Power loss kW 14 100 kW to transmit 86 kW Voltage drop kV 1.4 Required supply voltage (DC) kV 10

AC/DC Comparison

ACTrip
44 m
3 × 16
۱.25 ۲
4.8-3.2
680
1901
1,400
6.6
950
4.5
30 k
<mark>8</mark> M

Monopolar DC Sea Return hase 17 mm nm mm^2 Copper Shield **2**/km $1.4 \Omega/km$ Kg/m 0.90-0.57 Kg/m kΝ 70 kN kΝ 30 kN 500LW/900DA mm mm $<\!\!\vee$ 10 kV \vee I,400∨ A |0A| \mathbb{W} 100 kW I€ 2.5 M€

AC/DC Efficiency Comparison

Monopolar solution AC could be used with acceptable efficiency below 50 km of distance (Antares). Monopolar DC solution for longer distance (NEMO).

Sea Return Electrode

Nemo Phase 2 Cable Conclusion

By adapting terrestrial AC utility practice to an undersea application, a fault-tolerant power delivery system can be built. The difference from utility power delivery approaches for long distance is the use of DC, which is justified by high cost of AC, (Cable and Deployment) and high efficiency loss.

The shipment and deployment system is in favour of standard telecom monopolar cable

Standard rail transport for telecom cables

Inside cable storage

Outside cable storage

perating Submarine Cables in the Mediterranean Neutrino Experiments

Cable performance

Antares Cable: Alcatel URC-3 21.5 mm Fibers Number 48 40 km length Unipolar AC solution

NEMO Phase | Cable: Nexans R 4.2/3.2 6 Electrical Conductors Fibers Number 10 28 km length 3 Phases AC solution

NEMO Phase 2 Cable: Alcatel OALC 4 -17 mm Type 31 Fibers Number 20 100 km length Unipolar DC solution

Alcatel OALC - 4 17 mm Type 30

Bathymetry of the cable path and termination area an example

Cable Deployment

The Burial Activity

Soft Soil

Firm Soil

Nemo Phase 2 Power Feeding Equipment

Main parameters:

Switch control unit, consisting of:

- Main machine interface to control the setting of different operation modes

- Dummy load, 10kV, 5kW

Electrical data:

Output voltages and currents:

- 0 ... 10 kV negative @ 0 ... 5 A
- 0 ... 1.5 kV positive @ 1.4 A

Input voltage: 400V / 50Hz 3 phases + neutral + protection earth

Nominal input current: 5.0 A

Maximum input current: 6 A

Mechanical data (including CTR rack):

Weight: approx. 400 kg

Dimensions: 600 / 2030 / 1200 mm (w/h/d)

Output ripple at 10kV

Nemo Phase 2 Cable Termination

CTA Assembly

DC/DC Converter 10 KVDC/375 VDC 10kW

Inputs in series

Outputs in series / parallel matrix

48 sub converters each 200V to 50V - 210 W

Inputs in series

Outputs in series / parallel matrix

In the event of the FET failing Open circuit the diodes fail short circuit, typically 0.5 to 1 ohm

Modular design allows for flexibility in input and output voltages.

Output diodes allows Large scale failure of sub converter output sections or control with only reduced output current.

Sub converters input sections fail short circuit allowing large to fail without loss of output.

Topology used in space craft by JPL NASA for the Neptune Project

Low stress design

600V transistors used to switch 200V

Devices capable of working at 100°C used at 36°C.

Heat Transfer by Fluorinert FC-77 -

Fluorinert liquids are thermally and chemically stable, compatible with sensitive materials, including metals, plastics and elastomers, having a viscosity similar to water but approximately 75% greater density, The dielectric strength is in excess of 35,000 volts across a 0.1 inch gap.

DC/DC Converter Single Stage 200/50 VDC 210 W

MVC Component Test

X-Ray showing plate construction. Without bond wires, rupture current greater than 150A

Component insulation stress

- Components tested to 25kV for 10kV use
- •Exceptionally low leakage
- •Key components tested for 4 wks

MVC Assembly

Single Board

Bellow Pressure Compensation

Complete MVC

MVC Vessel

Stack Unit

MVC Qualification Tests Flowchart

KM3Ne

KM3NeT

MVC Factory Test

MVC Test Performance and Results

Input Voltage	-10 kVVDC
Max Steady State	-10kVdc max steady state; -5.7kV, -5.2kV hysteresis
Input ripple Current	Maximum 1.5mA at 50kHz
Input Surge Current	3A at turn on
Output Voltage	375 VDC
Output Ripple Voltage	I Vrms. In any case 10 Vpp frequency range
Output Current	0 - 25 A
Output Voltage Overshoot	90% > 10% Step Load: overshoot \leq 8.5% with 5 ms of settling
Output Voltage Undershoot	10% > 90% Step Load: undershoot \leq 7.5% with 5 ms of settling
Output Regulation	± 1 % over load, line variations and temperature variations
Output short circuit protection	By fast blocking of power switches of each convert. **
Switching frequency	100 kHz ± 5 %
Efficiency	> 87 % at 10 kV 25 A load

** Short circuit protection

Threshold = 36 A

Delay time = 25 microseconds

Switch off time: the electronics instantaneously stops after these 25 µs.

The output filter capacitors (11.2 uF in parallel with a damping filter(90uF with 3 Ohm in series)) continue to discharge into the short circuit, but there will be no current into a straight short-circuit after Ims.

Deployment Test MVC Frame

Dummy Load Frame Test

Sea-floor Examples Neutrino Telescope Power Distribution Star Distribution

100 Km

- 91 ÷ 127 DU
- 20 floors per DU

MEOC to shore

M. Sedita TVVEPP-09 Paris 21-25/September 2009

Active Brancing Unit

SMVC Connection System an Example

- Four types of ODI connectors are in use on MVC Frame
 - Hybrid optical and electrical connectors at the output interface
- Generation High Power
 - For the electrical connection between the CTA and MVC
- **Wautilus** Diver Mate
 - For the electrical connection between the MVC and Junction box
- **OROLLING** seal optical
 - For the optical connection between the CTA and Junction box

The INFN-INGV PEGASO Project

SEAEYE - Cougar

PEGASO in lifter configuration

- Maximum operating depth 2000 metres upgraded to 4000 m
- 80 kg (176 lb) payload
- I 00 kgf forward thrust (bollard pull)
- 76 kgf vertical thrust
- Four simultaneous video channels
- Fiber optic video transmission
- Optional fiber optic data transmission
- Seaeye SM6 brushless DC thrusters with velocity feedback control

PEGASO with DSS in supporting configuration for the ROV

M. Sedita TWEPP-09 Paris 21-25/September 2009

Cable Maintenance, The MECMA Consortium

The parties to the agreements notified are actually 44, mostly telecom companies now include IN2P3 for the Antares project and INFN for the NeMO project.

On 14 October 1999 the European Commission received notification, pursuant to Articles 2 and 4 of Council Regulation No 17, of an agreement between 27 participants related to submarine telecommunications cable maintenance and repair. (Case No IV/37.669 - Mediterranean Cable Maintenance Agreement) (1999/C 311/04)

The agreement provides for the performance of repair, maintenance and improvement services to the owners of undersea telecommunications cables (represented by the maintenance authorities) in the Mediterranean Sea, Black Sea and Red Sea by several operators of cableships.

The advantage to take part of the consortium is represented from the cableships operators that make available a certain number of cableships to the maintenance authorities, which are stationed at strategic locations and kept on permanent stand-by in order to be able to repair, as quickly as possible, any fault that may occur in any of the cables and to perform general maintenance services with reasonable costs.

Single conductor power of large deep sea structures possible using standard telecom cables Up to 50 km with 4kV A.C. (ANTARES) Around 100 km; 10 kV D.C. (NEMO)

ALCATEL Deep sea DC-DC convertor demonstred with dummy load tests at factory and now with 5 nodes deployed & powered in NEPTUNE deep sea oceanographic network (West Coast: Canada)

ALCATEL Node to be used in NEMO and probably also for KM3NeT