Microelectronics User Group Meeting

TWEPP 2009, Paris 22/9/2009

■ *17:30 – 17:45*

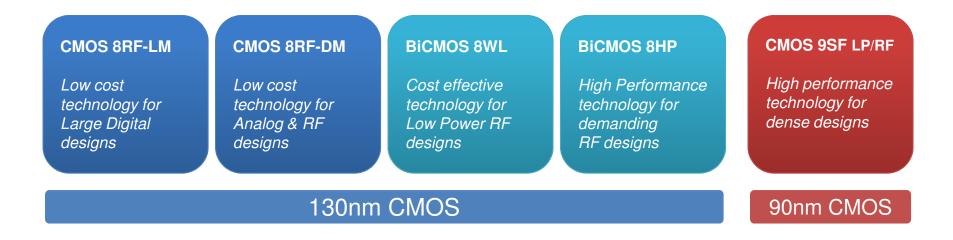
"Access to ASIC design tools and foundry services at CERN for SLHC" by Kostas Kloukinas (CERN)

17:45 - 17:15

"Mixed-Signal Challenges and Solutions for advanced process nodes" by Bruno Dutrey (Cadence Design Systems SAS, Velizy, France)

17:15 – 18:45

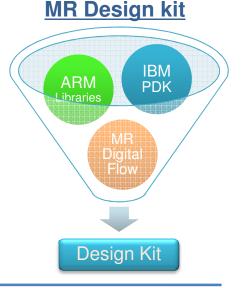
"Digital Block Implementation Methodology for a 130nm process" by Sandro Bonacini (CERN)


■ 18:45 — 19:00

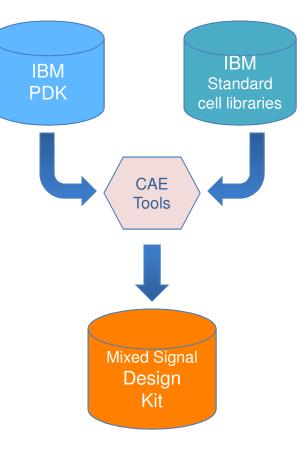
"Discussion"

Access to ASIC design tools and foundry services at CERN for SLHC

Kostas Kloukinas CERN, PH-ESE dept. CH1211, Geneve 23 Switzerland



- Access to Foundry services & Technology technical support.
- 130nm (CMOS & BiCMOS) and 90nm contract available since 6/2007.
- Future technologies can be negotiated with the same manufacturer, once the necessity arise.


PDK and Mixed Signal Design kit

- Objectives
 - Development of a "Design Kit" for Mixed Signal environments.
 - With integrated standard cell libraries.
 - Establish well defined Analog & Mixed Signal design workflows.
 - Targeted to **big** "A" (analog), **small** "D" (digital) ASICs.
 - Implemented on modern versions of CAE Tools.
 - Replace our previous Design Kit distribution.
 - Based on the ARM/ARTISAN cells and an automated *digital only* design flow.
 - Making use of old versions of CAE tools.
 - Two years in service.
 - Already distributed to 25 institutes
 - Users can continue using the old design kit and the ARM libraries since they have signed NDAs directly with ARM.
 Maintenance and technical support will be provided by ARM.

CMOS8RF Mixed Signal design kit

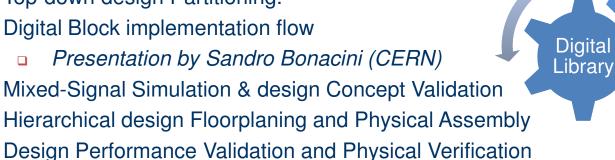
- Key Features:
 - IBM PDK V1.6
 - IBM Standard cell and IO pad libraries
 - Physical Layout views available.
 - Separate substrate contacts for mixed signal low noise applications.
 - Access to standard cells libraries is legally covered by already established IBM CDAs
 - New versions of CAE Tools
 - Open Access database support for increased interoperability of Virtuoso and SOC-Encounter environments.
 - Compatible with the "Europractice" distributions.
 - Virtuoso IC 6.1.3, Analog front-end design
 - SOC Encounter 7.1 Mixed signal back-end design
 - IUS 8.1 support for simulations.
 - Calibre support for Sign-Off Physical Verification
 - Support for LINUX Platform (*qualified on RHEL4*)

- Two independent design kits:
 - CMOS8RF-LM (6-2 BEOL)
 - CMOS8RF-DM (3-2-3 BEOL)

22/9/09

Kloukinas Kostas **CERN**

7

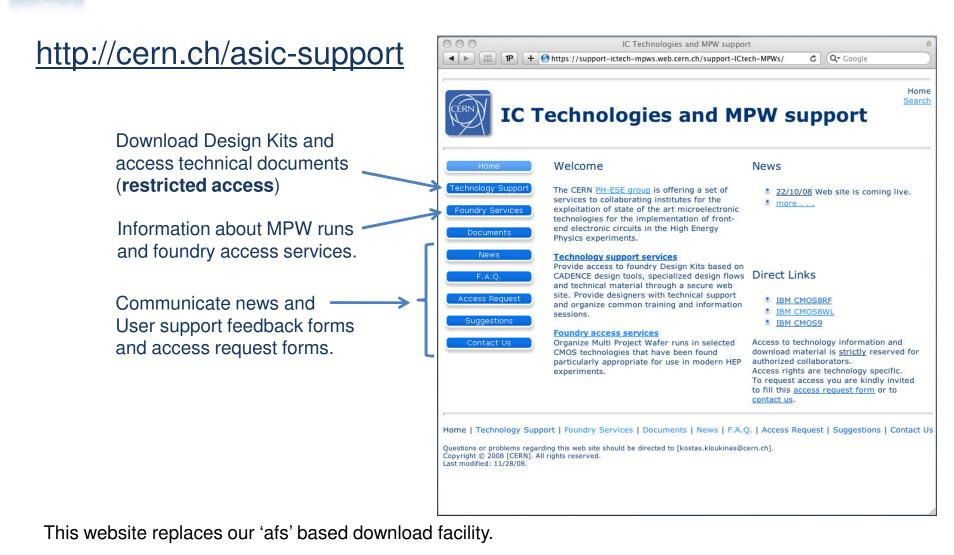

PDK

Design

Workflows

CERN – VCAD Cadence - IBM collaboration

- VCAD brought in their invaluable expertise on the CAE tools
 - Presentation by Bruno Dutrey (VCAD)
- IBM provided the physical IP blocks and important technical assistance
- CERN assists the development and validates the design kit functionality


CMOS8RF Mixed Signal Workflows

- Digital Block implementation flow
- Standardized, validated Design Workflows
 - Top-down design Partitioning.
- Analog & Mixed Signal (AMS) Workflows.

- The Design kit will be made available to collaborating institutes.
 - No access fees required.
 - Pay-per-use scheme.
 - Some small fees will be applied when prototyping the designs through CERN,
 - This should cover part of the design kit maintenance costs in the long term.
 - Planned for release in October 2009.
 - Announcement by e-mail to the "130nm user list".
- Acquiring the CMOS8RF Mixed Signal Design Kit
 - Contact <u>Bert.Van.Koningsveld@cern.ch</u> or <u>Kostas.Kloukinas@cern.ch</u>
 - Establish a CDA with IBM (if not already in place).
 - Granted access to the CERN ASIC support web site.

The CERN ASIC support website

22/9/09

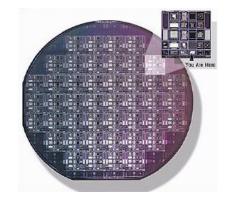
Maintenance

- Distribution of:
 - IBM PDK updates.
 - Design Flow updates and enhancements.
 - Updates to accommodate new releases of CAE tools.

User Support

 Limited to the distributed Design Kit version, running under the supported versions of the CAE design tools.

Training sessions organized at CERN


- Scheduled sessions:
 - 1st session: 26 to 30 October (CERN internal)
 - 2nd session: 16 to 20 November (open to external engineers)
 - 3rd session: 30 Nov to 4 December (open to external engineers)

Supported Technologies:

- □ IBM CMOS6SF (0.25µm), legacy designs
- IBM CMOS8RF (130nm), mainstream process
- IBM CMOS8WL & 8HP (SiGe 130nm)
- □ IBM CMOS9SF (90nm)

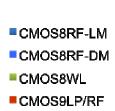
MPW services:

- CERN offers to organize MPW runs to help in keeping low the cost of fabricating prototypes and of small-volume production by enabling multiple participants to share production overhead costs.
- CERN has developed very good working relationships with the MPW service provider MOSIS as an alternate means to access silicon for prototyping.

Engineering runs

 CERN organizes submissions for design prototyping and small volume production directly with the foundry.

MPW runs with MOSIS


- CERN made extensive use of the MOSIS CMOS8RF MPWs last year.
 The break-even point for the cost of a CERN MPW and a MOSIS MPW is ~150mm².
- Negotiations with MOSIS allowed for <u>better pricing conditions</u> for the CMOS8RF MPW services
 - MOSIS recognized the central role of CERN in research and educational activities.
 - 35% cost reduction compared to 2008 prices
 - Waived the 10mm2 minimum order limit per submission
 - CERN appreciates the excellent collaborating spirit with MOSIS
- <u>Convenience</u> of regularly scheduled MPW runs with MOSIS.
 - In 2008 there were <u>6 runs</u> scheduled <u>every 2 months</u>.
 - In 2009 there will be <u>4 runs</u> scheduled <u>every 3 months</u>.
- Convenience for accommodating different BEOL metallization options:
 - DM (3 thin 2 thick 3 RF) metal stack.
 - □ LM (6thin 2 thick) metal stack.
 - C4 pad option for bump bonding.

Prototyping activity with MOSIS

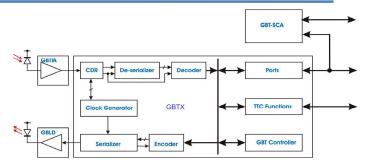
CMOS8RF (130nm)

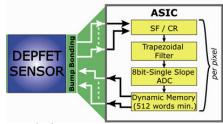
- 20 designs on 5 MPW runs
 - 7 runs organized, 2 canceled by MOSIS due to insufficient number of designs
 - 2 to 8 designs per MPW run
 - Smallest design 1 mm², largest design 20 mm²
 - 13 designs on 8RF-DM and 7 designs on 8RF-LM
- 100 mm² total silicon area
- CMOS8WL (130nm SiGe)
 - 3 designs on 1 MPW run
 - 10 mm2 total silicon area
- CMOS9LP/RF (90nm)
 - I design of 4mm² on 1 MPW
- Re-fabrication requests: 2 designs on 8RF and 2 designs on 8WL

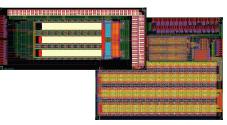
2008 - 2009

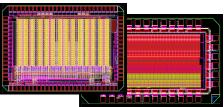
(number of submitted designs)

not a comprehensive list


- Gigabit Transceiver Project (GBT)
 - "GBLD" Gigabit Laser Driver chip
 - GBT-TIA"Tranimpedance Amplifier chip
 - "e-link" test chip
 - "GBTX", first prototype transceiver chip (2009Q4 MPW)
- DSSC Project for the XFEL Synchrotron Radiation Source
 - DRAM test chip, SRAM, test chip, some digital blocks
 - Front-End with source follower readout for DEPFET
 - Front-End with drain follower readout for DEPFET
 - Current-mode trapezoidal filter
 - First proto with all elements in the pixel, bump test chip (2010 MPW)


NA62 Pixel Gigatracker detector


- Readout test chip with ON pixel TDC cell
- Readout test chip with End-Of-Column TDC cell


ATLAS PIXEL 'b-layer upgrade'

- Discriminator test chip
- SEU evaluation test chip
- FEI4 first full scale prototype chip (2009Q4 engineering run)

2008 - 2009

- CMOS8RF Engineering run **submitted** in 2008Q3.
 - "MEDIPIX-3" PIXEL matrix readout chip.
 - Size: 14 X 17 mm²
 - 12 wafers ordered.

CMOS8RF scheduled Engineering run

- "FEI4", ATLAS PIXEL readout chip
- 19 X 20 mm²
- Tape out : 2009Q4

- Technology support & foundry services.
 - Provide standardized common design kits and design flows.
 - Provide access to advanced technologies by sharing expenses.
 - Organize common Training and Information sessions.
 - Collective activities help to minimize costs and effort.
- Availability of <u>foundry</u> and <u>technology</u> services is modulated by user's demand.
- Your feedback is welcomed. Please contact:
 - Organizational issues, contracts etc.:
 - <u>Alessandro.Marchioro@cern.ch</u>
 - Technology support & Foundry services:
 - Kostas.Kloukinas@cern.ch
 - Access to design kits and installation:
 - Bert.van.Koningsved@cern.ch

THANK YOU

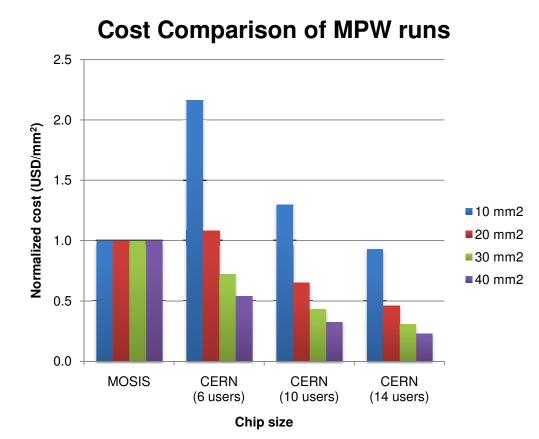
- 17:30 17:45
 - "Access to ASIC design tools and foundry services at CERN for SLHC" by Kostas Kloukinas (CERN)
- **17:45 17:15**
 - "Mixed-Signal Challenges and Solutions for advanced process nodes" by Bruno Dutrey (Cadence Design Systems SAS, Velizy, France)
- 17:15 18:45
 - "Digital Block Implementation Methodology for a 130nm process" by Sandro Bonacini (CERN)
- 18:45 19:00
 - "Discussion"

■ 17:30 – 17:45

- "Access to ASIC design tools and foundry services at CERN for SLHC" by Kostas Kloukinas (CERN)
- 17:45 17:15
 - "Mixed-Signal Challenges and Solutions for advanced process nodes" by Bruno Dutrey (Cadence Design Systems SAS, Velizy, France)

17:15 – 18:45

- "Digital Block Implementation Methodology for a 130nm process" by Sandro Bonacini (CERN)
- 18:45 19:00
 - "Discussion"



- 17:30 17:45
 - "Access to ASIC design tools and foundry services at CERN for SLHC" by Kostas Kloukinas (CERN)
- **17:45 17:15**
 - "Mixed-Signal Challenges and Solutions for advanced process nodes" by Bruno Dutrey (Cadence Design Systems SAS, Velizy, France)
- 17:15 18:45
 - "Digital Block Implementation Methodology for a 130nm process" by Sandro Bonacini (CERN)
- 18:45 19:00
 - "Discussion"

- The break-even point for the cost of a CERN MPW and a MOSIS MPW is ~150mm².
- At present the level of demand is below threshold for CERN-organized MPWs.

Technology Key Features

	8RF-LM	8RF-DM	8WL	8HP	9SF	9LP/RF
Process	130nm	130nm	130nm SiGe	130nm SiGe	90nm	90nm
Vdd (V)	1.2/1.5	1.2/1.5	1.2	1.2	1.0/1.2	1.0/1.2
Pad cell (V)	2.5/3.3	2.5/3.3	2.5/3.3	2.5/3.3	2.5	2.5
Level of Metals	6-8	6-8	6-8	6-8	4-10	4-10
Metalization	Cu	Cu + Al	Cu + Al	Cu + Al	Cu	Cu
Analog Thick Metal	No	Yes	Yes	Yes	No	Yes
Density (Kgates/mm2)	200	200	200	200	400	400
Power (µw/MHz/gate)	0.009	0.009	0.009	0.009	0.006	0.006
Ring Osc. Delays (ps)	27	27	27	27	21	21
Bipolar beta	-	-	230	600	-	-
Bipolar ft (GHz)	-	-	100	200	-	-
MIMcap (fF/µm²)	n/a	2.05	4.1	1.0	n/a	
VNCAP (fF/µm ²)	n/a	1.3	1.3	n/a	n/a	
Resistors	n+diff. p ^{+,} p ⁻ poly. tantalum	n+diff. p ^{+,} p ⁻ poly. tantalum	n+diff. p ^{+,} p ⁻ poly. p poly tantalum	n+diff. p ^{+,} p ⁻ poly. tantalum	n+diff. p ^{+,} p ⁻ poly. tantalum	n+diff. p ^{+,} p ⁻ poly. tantalum
efuse	yes	yes	yes	yes	yes	yes

CMOS8RF Technology Features

Standard Features

- 130 nm lithography, twin-well on 1-2 Ωcm non-epi P- substrate, low K dielectric
- Thin Oxide (22Å gate) FETs (1.2 /1.5V)
- Thin Oxide MOS Varactors
- Forward bias diodes
- N-well resistor
- 5 to 8 levels of metal
 - Thin and thick Cu metal ($\sim 0.3/0.55 \ \mu m$)
 - Last metal options:

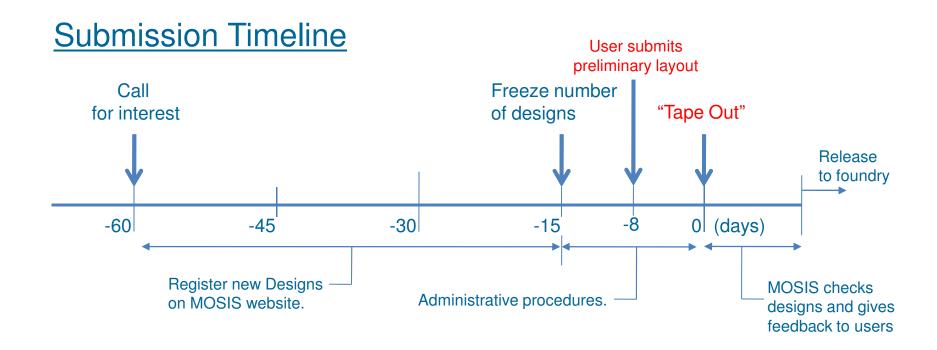
LM: Cu 0.55μm DM: 3 μm Cu + 4 μm Al

- Vertical Natural Capacitor
- Spiral inductors, RF Transmission lines
 - Series & Symmetrical inductors in DM wiring option only
- Electrically programmable fuses
- Wire bond or solder bump (C4) terminals

Optional Features

- Triple-well NFETs
- Thin Oxide Low power FETS
- Thin Oxide Low-Vt FETs
- Thick Oxide (52Å) 2.5V FETS
- Thick Oxide (52Å) 3.3V FETS
- Thin and thick Oxide Zero-Vt NFETs
- Thick Oxide MOS Varactors
- Hyperabrupt Varactor
- Polysilicon and diffused resistors
- TaN metal resistor
- Single and dual-layer MIM capacitor (DM option only)

	LM Last Metal							DM Last Metal					
	8	7	8	7	6	5	6	7	7	8	8		
DM							MA	MA	MA	MA	MA		
Option							E1	E1	E1	E1	E1		
							LY	LY	LY	LY	LY		
LM Option	LM	LM	LM	LM	LM	LM							
2X	MG	MG							MG	MG			
Levels	MQ	MQ	MQ	MQ	MQ	MQ	MQ	MQ	MQ	MQ	MQ		
			M6										
	M5		M5	M5									
1X	M4	M4	M4	M4	M4						M4		
Levels	Мз	Мз	MЗ	Мз	МЗ	Мз		Мз		MЗ	Мз		
	M2	M2	M2	M2	M2	M2	M2	M2	M2	M2	M2		
	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1		
Code	5-2	4-2	6-1	5-1	4-1	3-1	2-1	3-1	2-2	3-2	4-1		


MOSIS MPW Fabrication Schedule (indicative*)

	-20	09 —								- 2010					
	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
CMOS8RF-DM ¹	9			1			10			9			8		
BiCMOS8WL	16			22			24			23			15		
BiCMOS8HP		14		16			17			16			8		
CMOS9LP/RF				22				21				25			

(*) as published on the MOSIS web site: http://www.mosis.com/ibm/ibm_schedule.html (1) 8RF-LM 0.13 µm designs can be added to 8RF-DM runs with sufficient advance notice

- Early planning is essential for cost effective prototyping.
- Communicate your submission plans with: <u>Kostas.Kloukinas@cern.ch</u>
- There are advantages to submit to MOSIS via CERN.

- Turn Around Time: ~70 calendar days from release to foundry
- Number of prototypes: 40 pieces

Distributed by CERN

Technology	Process	Distributable					
CMOS8RF-LM	130nm	IBM PDK Design Kit					
CMOS8RF-DM	130nm	IBM PDK Design Kit					
BiCMOS8WL	130nm	IBM PDK					
	(SiGe)	IBM PDK					
BiCMOS8HP	130nm						
	(SiGe)	IBM PDK					
CMOS9SF	90nm						
IBM PDK : Physical Design Kit for <u>Analog full custom design</u> .							

Design Kit : Design Kit that supports <u>Analog & Mixed Signal design</u>.