HEP experiments in Japan - The Next Generation -

Ryosuke Itoh KEK

TWEPP09, Paris, Sep.21 2009

1

TWEPP09, R.Itoh

Outline

Introduction : Looking back past
 J-PARC and T2K
 KEKB+Belle to SuperKEKB+Belle II
 Summary

1. Introduction

- Japan has a long history of the accelerator based HEP experiments.

1956: INS: 1.3GeV Electron Synchrotron
1970: KEK: 12GeV Proton Synchrotron(KEK PS)
→ Many experiments, and K2K from 1999
1983: KEK: TRISTAN e⁺e⁻ collider
→ Data taking started in 1986 by AMY, TOPAZ, VENUS and SHIP
1995: KEK: KEKB B-factory
→ Data taking started in 1999 by Belle

- KEK PS stopped operation in 2005.

- KEKB is still running and data taking by Belle is going on.

KEK 12GeV PS

Original design in 1970

KEK 12GeV PS

Original design in 1970

Final configuration

図1 高エネルギー加速器研究機構 陽子加速器施設全体図

KEK 12GeV PS

Original design in 1970

Final configuration

図1 高エネルギー加速器研究機構 陽子加速器施設全体図

Beamline for K2K

Physics outputs from KEK PS

- K2K

* Long-baseline neutrino oscillation exp.

Physics outputs from KEK PS

- K2K

* Long-baseline neutrino oscillation exp.

- E246: T-Violation in $K^+ \rightarrow \pi^0 \mu^+ \nu$

- E391a: Measurement of $K_1 \rightarrow \pi^0 \nu \nu \rightarrow Unitarity triangle$

TRISTAN

TOPAZ-TPC

129 AZ 2910 Reas 20.40647 5-2.4064 5-3.5564 6-3.5564 8-3.5564 8-3.5564

3-jet event

* e⁺e⁻ collider at √s=52-61.4 GeV
* 4 experiments: AMY, TOPAZ, VENUS and SHIP

3-jet event

* e⁺e⁻ collider at √s=52-61.4 GeV
* 4 experiments: AMY, TOPAZ, VENUS and SHIP

What's next?

- KEK PS stopped operation in 2005 => taken over by J-PARC
 - * Higher intensity : MW class
 - High intensity neutrino beam for T2K
 - Many hadron experiments
- KEKB is still running.

* But more than 50 times higher luminosity is required for the precision study of rare decays of B mesons to search for New Physics in the loop diagram.

=> Upgrade is being planned : SuperKEKB

2. J-PARGana F2

(to Kamioka

GeV synchrotron (RCS)

FY2007 First Beam
 FY2008 First Beam
 FY2009 First Beam

50 GeV Synchrotron

Neutrino

Bird's eye photo in January of 2008

EFF

Hadron Facility

4 - 1

J-PARC : Power frontier proton accelerator

10-100 times higher power than that of existing accelerators

3GeV RCS 333µA 1MW

50GeV Ring 15μΑ 0.75MW

J-PARC status

Recent milestones:
December 23, 2008:
*30 GeV beam acceleration and fast extraction to the beam abort dump
*MLF user run (20kW)
January 27, 2009:
*Beam extraction to the Hadron Experimental hall using slow beam extraction system
February 19, 2009:
* Government inspection for radiation safety

30 GeV / 0.1MW operation in 2009-2010

T2K: Tokai to Kamioka

- Goals of the T2K project $% \left(T_{1}^{2}\right) =\left(T_{1}^{2}\right) \left(T_{$
 - ν_{μ} disappearance × 10 more precise $\theta_{23}, \Delta m_{23}^2$
 - $\nu_{\mu} \rightarrow \nu_{e}$ appearance θ_{13} discovery
- $\nu_{\mu} \rightarrow \nu_{e} \text{ vs. } \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ $\delta_{CP} \text{ discovery}$

Off-axis beam

Status of neutrino facility construction

Status of neutrino facility construction

Target

5 year construction 2004~2009
Construction completed on schedule!
Start beam commissioning in April 2009!

UA1 magnet donated From CERN installed

Beam dump installed

Decay volume completed

Target station completed

Primary proton line completed

TWEPP09, R.Itoh

T2K:ND280 detector system

ND280 : Off-axis neutrino detector

- Measurement of v flux and s in the SK direction. •
 - $-v_{\mu}$, v_{e} and anti- v_{μ} flux and the energy spectrum.
 - Quasi-Elastic (Signal for E, reconstruction)
 - Inelastic $\pi^{\pm,0}$ production (background)
 - Detector components.
 - TPC
 - Fine-Grained Scintillator detector (FGD) for CC interaction.
 - Lead/Scintillator tracking detector for π^0

nm

- Electron Calorimeter
- Muon Range Detector

MPPC/SiP

FGDs

TPCs

ECAL

Magnet voke

Magnet

v beam

coils

FGD/TPC beam test @ TRIUMF

50-400MeV/c e/μ/π/p

FGD energy deposit vs layer

Consistent with expectation, satisfy requireements 22

UA1 Magnet Yoke

Fine-Grain Detectors

P0D (π⁰detector)

FGDs

 Magnet Installation Completed June 15, 2008

- Shipping of FGD/TPC to J-PARC May-June, 2009

- Installation of FGD/TPC in Oct.2009

- Commissioning until the end of 2009

16 IEEE NPSS Real Time Conference 2009 Beijing TWEPP09, R.Itoh

New electronics installed last summer Ready for commissioning

SK New DAQ system : triggerles DAQ

- Full TCP/IP based data transmission from FE to disk

- "Triggerless" DAQ : No hardware trigger
 - * All signal hits from PMT are read.
 - * Trigger decision by software after event building.

Software trigger for event building

- * Sophisticated trigger conditions can be applied for various event types by varying threshold and gate width
 - Solar neutrino (Low energy trigger)
 - Atmospheric neutrion (Med-High energy trigger)
 - T2K trigger (w/ beam spill info sent from T2K)
 - Calibration trigger (various conditions)

T2K Physics Sensitivity

TWEPP09, R.Itoh

T2K Physics Sensitivity

3. KEKB+Belle to SuperKEKB+Belle II

KEKB and Belle

KEKB Accelerator

Belle Detector

runinfo ver.1.58 Exo3 Run1 - Exo69 Run1408 BELLE LEVEL latest: day is not 24 hours

Luminosity improvement by Crab Crossing

TWEPP09, R.Itoh

Luminosity with Crab Crossing

Physics results from KEKB/Belle

1. Discovery of CP violation in B meson decays

535M BB pairs

$sin2\phi_1 = 0.642 \pm 0.031 (stat) \pm 0.017 (syst)$ A = 0.018 ±0.021 (stat) ±0.014 (syst)

Physics results from KEKB/Belle

1. Discovery of CP violation in B meson decays

535M BB pairs

sin2φ₁= 0.642 ±0.031 (stat) ±0.017 (syst) A = 0.018 ±0.021 (stat) ±0.014 (syst)

→ Nobel Prize to Kobayashi and Maskawa

Physics results from KEKB/Belle

1. Discovery of CP violation in B meson decays

535M BB pairs

sin2φ₁= 0.642 ±0.031 (stat) ±0.017 (syst) A = 0.018 ±0.021 (stat) ±0.014 (syst)

\rightarrow Nobel Prize to Kobayashi and Maskawa

2. Discovery of new particles : X(3872), Y(3940), Z(4430)..... → particles consisting of 4 quarks?
3. Evidence of D⁰-D⁰bar mixing and much more!

Upgrade: SuperKEKB and Belle II

Two machine options

	High current option (LER/HER)	Nano-beam option (LER/HER)	
Beam current I (A)	High current : 9.4/4.1	~3/~2	
Bunch length σ_{z} (mm)	Short bunch length : 5/3	6/6	
Emittance ϵ_x (nm)	24/18	Low emittance : 1/1	
β _y (nm)	3/6	Small β : 0.22/0.22	
Beam size σ_y	0.85/0.73 (µm)	Small beam size : 34/44 (nm)	
Final Q-magnet layout	 Common QCS for 2 beams location <u>40cm (L)</u> / 65cm (R) Little space in L side 	Two separate Q-magnets for each 2 beams Little space in both L/R sides	
ACS High	-current LER beam	QCS LER beam	
High-curren Nano-beam	t option Higher SR B option IR assembly	G / HOM heating	

Two machine options

	High current option (LER/HER)	Nano-beam option (LER/HER)	
Beam current I (A)	High current : 9.4/4.1	~31~2	
Bunch length σ_z (mm)	Short bunch length : 5/3	6/6	
Emittance ε_x (nm)	24/18	Low emittance : 1/1	
β _y (nm)	3/6	Small β : 0.22/0.22	
Beam size σ_y	0.85/0.73 (µm)	Small beam size : 34/44 (nm)	
Final Q-magnet layout	 Common QCS for 2 beams location <u>40cm (L)</u> / 65cm (R) Little space in L side 	Two separate Q-magnets for each 2 beams Little space in both L/R sides	
QCS High	-current LER beam	QCS LER beam	
High-curren Nano-beam	t option Higher SR B	G / HOM heating	

Belle II in comparison with Belle

Vertex Detector: Pixel + SVD

Nano beam option: 1 cm radius of beam pipe

2 layer Si pixel detector (DEPFET technology) (R = 1.3, 2.2 cm) monolithic sensor thickness 50 μ m (!), pixel size ~50 x 50 μ m²

4 layer Si strip detector (DSSD) (R = 3.8, 8.0, 11.5, 14.0 cm)

Significant improvement in z-vertex resolution

DEPFET Pixel Detector @ Belle-II

* Originally planned to be used in ILD
Small, thin (50µm) Detector:
2 layers, 20 modules (in total)

v (cm)

Beam pipe radius (presently): 1.0 cm in the nanobeam option (NB)

Radii still subject to optimisation:

Overview of PXD DAQ Chain

C. Kiesling, DHH Meeting, Giessen, Aug. 7, 2009

Particle ID device : upgrade

- Barrel : 3 candidate = Focusing DIRC, fTOP, iTOP
 - Cherenkov ring imaging detectors with quartz
 - Locate in the current TOF region
- Endcap: Aerogel RICH

Operation principle of Barrel PID device

Variant of "DIRC" originally used by BaBar

Barrel PID : TOP

- Cherenkov ring imaging detector with precise timing information
 - Quartz radiator •
 - -2cm^Tx~40cm^Wx~2.5m^L
 - Possible configurations
 - -1-bar or 2-bar
 - Small stand-off box or not
 - MCP-PMT
 - Two candidates
 - Hamamatsu SL10 or Photonis 85015
 - Excellent time resolution (<40ps) required for good K/ π separation; confirmed on laser bench
 - Electronics
 - Fast waveform sampling
 - New ASIC chip ready soon

22(effective area Hamamatsu SL10

20

1ch 2ch 3ch

Endcap PID: Aerogel RICH (proximity focusing RICH)

-0.2

0

0.2

04

tx(rad)

Photon sensor options

• HAPD

- Tested on the bench and in the beam
- Stability, radiation hardness? Need more production R&D

• MCP-PMT

- Excellent beam and bench performance
- Good TTS for TOF information
 - ~35ps TOF resolution (low momentum PID)
- Need lifetime estimation

• SIPH (GAPD)

- Large number of photons, good stability, enough gain and reasonable TTS
- Light guides tested to increase the active area fraction

Radiation hardness: most probably a show-stopper

Requirements to Belle II DAQ

- Keep the same L1 trigger policy as that of Belle

	Current Belle	Upgraded KEKB
Typical L1 rate	0.5kHz	20kHz
(Maximum L1 rate	~1kHz	~40kHz)
L1 data size(in)	40kB/ev	300kB/ev
flow rate(in)	20MB/sec	6GB/sec
reduction	1	1/3
data size(out)	40kB/ev	100kB/ev
flow rate(out)	20MB/sec	2GB/sec
L3+HLT reduction	1/2	~1/10
Storage badwidth	20MB/sec	400MB/sec
	(including	HLT recon. data)

- Event size estimation does NOT include PXD!

 Timing dist. scheme is not included in this figure.

> HLT farms ~10 units of ~100 cores/unit

Control room 51

COPPER: Unified Readout Module

digitizers are mounted as daughter cards

Physics Sensitivity

Physics Sensitivity

Plan of Luminosity Accumulation

4. Summary

- Japan has a long tradition of accelerator-based HEP experiments.
- New proton facility called J-PARC started operation and T2K is now at the commissioning stage.
- KEKB/Belle has been running for more than 10 years and already produced many physics results.
- The upgrade to SuperKEKB/Belle II is about to start soon aiming at >50 times higher luminosity.

- Both T2K and SuperKEKB/Belle II will be the flagship HEP experiments in Japan for the coming decade.

Backup Slides

3GeV proton beam from RCS

Materials & Life Experimental Facility (*MLF*)

First muon beam on September, 28nd, 2008

Firstly observed µ-SR oscillation at J-PARC

Proton beam transfer line with muon target

J-PARC problems

Beam commissioning has been accomplished on schedule, BUT with low intensity.

Real challenge toward the power frontier machine just started.

- 1. Many issues (unreliable components, design etc.) to be solved
- 2. Beam must be provided to the users
- 1. Power upgrade should be also accomplished steadily.

•RFQ discharge problem:
•RF core long term stability problem:
•Stability of MR power supply and beam loss

- No problem for fast extraction with a level of 100kW operation
- Need more stability for slow extraction
- Clearly need major improvement for MW operation

J-PARC: Mid-term Schedule

- April-May, 2009 First beam commissioning with target/horn1 system □ Mid. May: Pass governmental inspection June~Sept, 2009 (during scheduled shutdown) Horn 2 and 3 installation and operation test Fall~Winter, 2009 Beam/Detector commissioning with full configuration Target/horn1,2,3 Full 280m detector configuration Winter JFY2009 ~ Summer 2010 \square As soon as ~100kW stable acc operation achieved, Physics run at ~100kW x10⁷s by Summer 2010 □ First physics results in 2010 $\Box \rightarrow$ Exceed sensitivity of present world record result from Chooz experiment
- After Summer 2010 (after RFQ replacement)
 - Physics data taking with > a few 100kW
 - \Box Next milestone: 1~2MW.yr = ~300kWx3~6yr= ~500kWx2~4yr
 - □ Final goal: 3.75MW.yr (approved by PAC)

Experiments at Hadron Hall

SuperKEKB: Design Options

	KEKB Design	KEKB Achieved (): with crab	SuperKEKB High- Current Option	SuperKEKB Nano-Beam Option
β _y * (mm) (LER/HER)	10/10	6.5/5.9 (5.9/5.9)	3/6	0.22/0.22
ε _x (nm)	18/18	18(15)/24	24/18	1/1
σ _y (μm)	1.9	1.1	0.85/0.73	0.034/0.044
ξ _y	0.052	0.108/0.056 (0.101/0.096)	0.3/0.51	0.07/0.07
σ _z (mm)	4	~ 7	5(LER)/3(HE R)	6
I _{beam} (A)	2.6/1.1	1.8/1.45 (1.6/1.1)	9.4/4.1	2.96/1.70
N _{bunches}	5000	~1500	5000	2500
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1	1.76 (1.96)	53	80

High Current Option includes crab crossing and travelling focus. Nano-Beam Option does not include crab waist.

TWEPP09, R.Itoh

Strategies for Increasing Luminosity

(3) Increase ξ_v

TWEPP09, R.Itoh

Option

Main Components of the PXD

C. Kiesling, 3rd Open Meeting of the Belle-II Collaboration, KEK, July 7-9, 2009

TOP

- Quartz: 255cm[⊥]x 40cm^w x 2cm[⊤]
 - Focus mirror at 47.8deg. to reduce chromatic dispersion
- Multi-anode (GaAsP) MCP-PMT

- Linear array (5mm pitch), Good time resolution (<~40ps)
- \rightarrow Measure Cherenkov ring image with timing info.

Barrel PID options

focusing TOP

Originally: (Nagoya) Bar cut into two pieces, forward piece used TOF

Separate readout plane for forward piece, i.e., two readout planes per phi segment

Now (a la Staric): Single bar used with single readout plane (?)

focusing DIRC

Originally: (Cincinnati) mirror was external to bar, standoff region between mirror and bar needed

Conceived with narrow (Babar-like) bars

Now:

Mirror now part of bar, may be tilted (off axis) Wide bar now used, ambiguities reduced imaging TOP (iTOP) Originally: (Hawaii) No focusing

Ultra-fine readout granularity

Now: Focusing mirror added Other photo-detectors possible

MCP-PMT status (Nagoya)

- Square-shape multi-anode MCP-PMT
 Multi-alkali photo-cathode
 - Gain=1.5x10⁶ @B=1.5T
 - Transit Time Spread (TTS):
 ~35ps @B=1.5T (single photon)
 - Position resolution: <5mm
- Semi-mass-production (14 PMTs)

HAPD status

Front-End Electronics for Photon Detectors

a) MCP-PMT : BLAB3 readout for HPK SL10 (Hawaii)

b) HAPD : Custom ASIC (KEK+Nagoya)

Comparison of Photon Detectors

	HAPD	MCP-PMT	MPPC
N _{ph}	8(+1) (→16)	10 (→15)	30
$\sigma_{_{artheta}}$	14	15	14
B = 1.5T	OK (improved perf.)	OK (improved perf.)	OK
long term stab. (aging)	OK (HV stability?)	OK?	ΟΚ
neutron damage	leakage current? → signal / noise	OK (?)	X
production	2.5 y	2 у	?
pieces	< 600	< 1000	< 500000
cost / piece	< 7000 €	< 4000 €	< 20 €
electronics	ASIC	WFS	WFS
channels	~ 75k	~ 60k	~ 120k

PXD integration with Belle II DAQ (one idea)

Near term schedule

- KEKB operation will be stopped by the end of this year.
- Detector decision by the same time.
- TDR in 2010
- Construction between 2010 spring and 2013 summer

-> Start experiment from 2013 fall

Summary of KEK Roadmap

