(Low-Power) Analog Design in Scaled Technologies

A. Baschirotto^{1,2}, V. Chironi², G. Cocciolo², S. D'Amico², M. De Matteis², P. Delizia²

¹ Dept. of Physics "G. Occhialini" University of Milano-Bicocca Milan – Italy

² Dept. of Innovation Engineering University of Salento Lecce – Italy

Analog Design in ScalTech

Outline

- $\circ\,$ CMOS technology scaling trends
 - Power reduction
 - {V_{DD}-V_{TH}} reduction
 - Gain reduction
 - V_{TH} variation
- ScalTech Analog design
 - ScalTech at transistor level
 - Transistor in subthreshold
 - ScalTech at circuit level
 - Analog switch
 - Opamp design
 - Basic bandgap design
 - ScalTech at system level
 - Analog filter
 - ADC

ScalTech → LV & LP

Paris, France September 21-25, 2009

- For CMOS SoC's
 - the larger digital part forces the use of the ScalTech
 - \rightarrow increased number of digital function for the same die area
 - reduced digital part power consumption
 - Example: FM receiver (JSSC2004)

ScalTech → LV & LP

Low-Voltage vs. Low-Power

In digital circuits, reducing V_{DD} → power reduction:

 $P_{dig} \approx f \cdot C \cdot V_{DD}^2$

- In analog circuits, with <u>thermal noise limitation</u>
- The analog power consumption $P_{an} = \beta \cdot I \cdot V_{DD} \dots I = P_{an}/(\beta \cdot V_{DD})$

$$DR = \frac{\left[V_{DD} - 2 \cdot V_{sat}\right]^2}{\alpha / I} = \left[V_{DD} - 2 \cdot V_{sat}\right]^2 \frac{P_{an}}{\alpha \cdot \beta \cdot V_{DD}}$$

For a given DR

$$P_{an} = \frac{DR \cdot \alpha \cdot \beta \cdot V_{DD}}{\left[V_{DD} - 2 \cdot V_{sat}\right]^2} \propto \frac{DR}{V_{DD}}$$

 \circ → P_{an} increases for V_{DD} decreasing

Para	CMO ameter of	S Teo f the d	chnol igital N	ogy s NFET i	scaling n IBM (g CMOS *	Pari France	is, September 21-25-200165 for Party
Node	Nm	250	180	130	90	65	V	12009
L _{GATE}	Nm	180	130	92	63	43		
t _{OX} (inv.)	Nm	6.2	4.45	3.12	2.2	1.8	V	
Peak g _m	μS/μm	335	500	720	1060	1400	1Ì	
g _{ds} **	μS/μm	22	40	65	100	230		
g _m /g _{ds}	-	15.2	12.5	11.1	10.6	6.1	V	
V _{DD}	V	2.5	1.8	1.5	1.2	1	$\downarrow \downarrow$	2
V _{TH}	V	0.44	0.43	0.34	0.36	0.24	V	
f _T	GHz	35	53	94	140	210*		3

- The above trends affects:
 - Analog block functionality
 - Analog block performance

* projected
 ** at peak g_m

CMOS Technology scaling MOS in Saturation region

$$I_D = \frac{1}{2} \cdot \mu \cdot C_{ox} \cdot \frac{W}{L} \cdot \left(V_{GS} - V_{TH}\right)^2$$

V_{GS} > V_{TH}

- $\,\circ\,$ V_{DD} is decreasing slower than V_{TH}
 - V_{GS} is approaching V_{DD}
- Output impedance is decreasing

^{*} Trond Ytterdal "Analog Circuit Design in Nanoscale CMOS Technologies", 2006

 $\circ \rightarrow V_{DDmin_STD}$ is technology dependent

$V_{DDmin_STD} > 2 \cdot V_{TH} + 2 \cdot V_{ov}$

The reduced distance {V_{DD}-V_{TH}} has impact on analog blocks

Minimum Transistor Channel Lenght [nm]

CMOS Technology scaling V_{TH} deviations

- In ScalTech V_{TH} strongly changes
 - Statistical variation
 - Technology & Temperature spread
 - Design
 - Mismatch
 - Design & Layout
 - o Systematic variation
 - Short & Narrow channel effects (W&L effects)
 - → Design
 - Shallow Trench Insulator (STI) effects
 - → Layout

CMOS Technology scaling MOS in Saturation region

- Technological Parameter Variation

 65nm CMOS Technology
 - W = 650nm L=65nm
 - $\circ~V_{GS}\text{=}730mV;~V_{DS}\text{=}1.2V$

	Nominal			Fast			Slow		
	-40°C	27°C	120°C	-40°C	27°C	120°C	-40°C	27°C	120°C
<i>V_{тн}[mV]</i>	584	547	496	510	475	425	646	606	552
g _{ds} [μΑ/V]	34.4	34.1	34.1	50.9	49.2	47.4	19.6	21.0	22.5
g _m [µA/V]	548	486	432	667	583	505	392	370	348
g _m /g _{ds}	15.9	14.3	12.7	13.1	11.8	10.6	20	17.6	15.5

- A cascode current mirror requires for the two cascode diodes
 - → $(2 \cdot V_{GS}) > (2 \cdot V_{TH}) \ge (1.2V)$ in the worst case
 - → No cascode current mirror in a safe design

- \circ **\rightarrow ScalTech** give better matching
- ScalTech <u>matched-limited</u> circuits (ADC) requires lower power

 The depletion layer is not limited to the charge in the area under the gate (QCH)

- For large W, QCHW is negligible
- For narrow W, QCHW becomes important !!!
 - → Vтн increases

- The depletion layer under the gate includes all the charge from S to D
- At S&D, part of the charge (QCHL) is not directly controlled by G but it depends on S&D

- For short L, QCHL has not to be included in the calculation of VT
 - \circ → VTH reduces

CMOS Technology scaling VTH Variation - Velocity saturation

- For low electric field (E)
 - $\circ\,$ the velocity increases proportionally

$$\mu_{O} = \frac{v_{sat}}{\varepsilon_{crit}}$$

For large electric field (i.e. Small L)

 the velocity saturates to vsat (≈ 10⁵ m/s)

$$I_D = W \cdot Q_m \cdot v_{sat} = W \cdot C_{ox} \cdot (V_{GS} - V_{TH}) \cdot v_{sat}$$

$$g_m = \frac{\partial I_D}{\partial (V_{GS} - V_{TH})} \cong W \cdot C_{ox} \cdot v_{sat}$$

CMOS Technology scaling Shallow Trench Isolation (STI)

- STI electronically isolates microstructures in semiconductors devices
 - \circ STI is smaller than LOCOS → STI replaces LOCOS
 - → structure density can be maximized

Isolation using LOCOS process

The "bird's beak" regions are wasted space

Paris, France

Isolation using STI process

The raised oxide profile will subsequently be nearly flattened by CMP

Wepp-09

-25, 2009

nics for Particle Physics

eptember

CMOS Technology scaling

Shallow Trench Isolation (STI) - Simulation issues

Technology models are extracted from the unitary transistor

- Both sides are affected by STI
- Stacked transistors may have different V_{TH}

V_{THo}

- "Internal" devices do not see STI and are *well matched* (same V_{TH2})

 Good for current mirrors (current steering DAC)
- BUT they are not modeled (post-layout in some Design Kits)
 - → For matched devices (current mirror, etc..) use external dummy (shield) devices
 - Matched but Unknown V_{TH} before layout

Analog Design in ScalTech

Outline

- $\circ\,$ CMOS technology scaling trends
 - Power reduction
 - {V_{DD}-V_{TH}} reduction
 - Gain reduction
 - V_{TH} variation
- ScalTech Analog design
 - ScalTech at transistor level
 - Transistor in subthreshold
 - ScalTech at circuit level
 - Analog switch
 - Opamp design
 - Basic bandgap design
 - ScalTech at system level
 - Analog filter
 - ADC

 $V_{GS} \approx V_{TH}$

• The structure is equivalent to

$$I_{D} = I_{Do} \cdot e^{q \cdot V_{GS} / n \cdot k \cdot T} \cdot e^{-q \cdot V_{BS} / n \cdot k \cdot T} \cdot \left[1 - e^{-q \cdot V_{BS} / k \cdot T} \right]$$

- OMINIMUM V_{OV}
- Small gate capacitance
- \bigcirc Large g_m/I_D ratio
- Carge voltage gain
 - Earge drain current mismatch
 → (input offset)
 - $\circ \otimes$ Large output noise current for a given I_D

○ ⊗ Low speed,
$$f_T \cong \frac{\mu \cdot V_T}{2 \cdot \pi \cdot L^2}$$

C DEGLI STUD

CMOS Technology scaling MOS in Subthreshold

Diode connected transistor

 \circ I_D = 60µA & L = 200nm

- For a given current
 - Larger is V_{GS} (closer to V_{TH}) ← → Smaller is W
 - Lower is g_m
 - Larger is g_{ds}
 - The gain is constant
 - \circ → For input stage a large device with low V_{GS} is OK ==> Large g_m
 - \circ → For output stage a small device with large V_{GS} is OK ==> Low g_{ds}

CMOS Technology scaling

V_{TH} Mismatch: Strong Inv. Vs. Weak Inv.

TABLE II

Threshold Voltage Mismatch Standard Deviations in Strong Inversion ($\sigma_{\Delta V_t}$) and Subthreshold V_{gs} Mismatch ($\sigma_{\Delta V_{gs}}$ at $I_d = 10 \text{ pA}/(W/L)$) and the Correlations Between the Mismatch Observations for a Range of Transistor Dimensions

	tion factor R ²	Correla	$\sigma_{\Delta Vt} \text{ (strong inversion)} (mV) $ $\sigma_{\Delta Vgs} @ [Id=10pA/(W/L)] (mV) $		$\sigma_{\Delta Vt}$ (strong inversion) (mV)		drawn_L (µm)	drawn_W (µm)	
	0.07	(2.1).7	0.7	4	10
	0.05	(3.0		1.1	1.1	10	2
	0.03	(4.5		.7	1.7	1	10
. •	94	(50 T	5.1		2.5	2.5	10	0.4
			45	10		5.4	5.4	1	2
· *	1.1		35	6.6		4.0	4.0	4	0.32
A summarian and a summarian	 		→ <u>30</u> <u>1</u> <u>8</u> <u>25</u> <u>1</u>	27		12	12	0.2	2
				12		3.9	8.9	1	0.4
	♦ Same		10	38		23	23	0.24	0.4
····			5 + 0 🖌	44		27	27	0.2	0.32
.0 4.0 5.0	2.0 3	1.0	0.0				1		

1/SQRT(WL) (1/um)

Fig. 12. Mismatch area scaling graph. Diamonds: strong inversion (linear region) V_t mismatch. Triangles: subthreshold V_{gs} mismatch (at 10 pA/square). The 6 mV μ m and 12.5 mV μ m lines are estimates for the corresponding area scaling factors for the strong and weak inversion mismatch standard deviations, respectively.

Analog Design in ScalTech

Outline

- $\circ\,$ CMOS technology scaling trends
 - Power reduction
 - {V_{DD}-V_{TH}} reduction
 - Gain reduction
 - V_{TH} variation
- ScalTech Analog design
 - ScalTech at transistor level
 - Transistor in subthreshold
 - ScalTech at circuit level
 - Analog switch
 - Opamp design
 - Basic bandgap design
 - ScalTech at system level
 - Analog filter
 - ADC

ScalTech Analog Switch Bootstrap switch

- A charge pump enable switch operation
 - $_{\odot}\,$ The switch operates with a fixed Vov=VDD
 - \rightarrow the R_{on} is constant for all the swing
 - $_{\odot}\,$ The gate voltage can go higher than the supply

OFF: Grounded gate ensures OFF state ON: VGs fived to VDD ensures ON state without overdriving gate

ScalTech Analog Switches

On-chip clock multiplication *

Boosted switch complexity

- Additional load for the previous stage
- A charge-pump for each switch increases area, power consumption and noise injection

^{*} A. M. Abo and P. R. Gray, "A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipelined Analogto-Digital Converter," IEEE J. Solid-State Circuits, vol. 34, pp. 599-606, May1999.

ScalTech Opamp General issue

It is key to get the maximum output swing available
 > Rail-to-Rail output swing is mandatory

 $V_{out_DC} = V_{DD}/2$

- For supply minimization & optimum switch operation
 Vin_DC close to ground or V_{DD}
- It is not possible to stack many devices between rails

 → no cascode
- To get sufficient gain multistage structures are used
 → for stability reason, bandwidth is limited

Paris

Optimum bias for V_{in_DC}=0

VDDmin = VTH + 2·Vov

- A low-voltage CMFB is needed
- Low Gain = $(g_m \cdot r_o)^2 \approx 40 \text{dB} 45 \text{dB}$

^{*} R. Castello, F. Montecchi, F. Rezzi, and A. Baschirotto, "Low-voltage analog filter", IEEE Transaction on Circuits and Systems - II - Nov. 1995 - pp. 827-840

 $V_{DDmin} = V_{TH} + 2 \cdot V_{OV}$

• Low Gain = $(g_m \cdot r_o) \approx 20 dB - 25 dB$

^{*} V. Peluso, P. Vancorenland, A. Marques, M. Steyaert, W. Sansen, "A 900mV 40μW Switched Opamp ΔΣ Modulator with 77dB Dynamic Range", ISSCC '98

ScalTech Opamp

Common-Mode Feedback

- The CMFB inputs are connected to the opamp output nodes @ ≈ V_{DD}/2
 o For LV, V_{DD}/2 < V_{TH}
- Passive level shift

- CM input of CMFB opamp is close to GND
- Lower CMFB GLOOP

 $V_{DDmin} = V_{TH} + 3 \cdot V_{OV}$

Switched-Opamp CMFB circuit

Paris, France

Vepp-09

- CM input of CMFB opamp is set to GND
- Charge domain level shifter (CCM)
- All switches connected to VDD or GND

 $V_{DDmin} = V_{TH} + 2 \cdot V_{OV}$

ScalTech Opamp Higher-gain structures

- CMOS gain-per-stage is dropping with technology scaling
- LV design disables cascode
 - \circ \rightarrow Multistage structure are needed
 - Compensation scheme are becoming crucial
 - Feedback (Miller cap)
 - Feedforward (g_m)

- FD structures are mandatory for achieving a sufficient DR
 - $_{\odot}$ LV CMFB is critical
 - $_{\odot}\,$ Feedforward paths are not seen by the CMFB !!!

ScalTech Opamp

Possible structures

- Multistage opamp topology
 - Nested Miller Compensation (NMC)
 - Damping-Factor-Control Frequency Compensation (DFCFC)
 - Positive Feedback Compensation (PFC)
 - Active Feedback Frequency Compensation (AFFC)
 - Single Miller capacitor Compensation (SMC)
 - Single Miller capacitor FeedForward Compensation (SMFFC)
 - Transconductance with Capacitance Feedback Compensation (TCFC)
 - Nested Gm-C Compensation (NGCC)
 - Dual-Loop Parallel Compensation (DLPC)
- To be compared in terms of:
 - AC Performance (Gain, bandwidth, phase margin)
 - \circ Load driving capability
 - $\circ\,$ Power consumption
 - \circ Area
 - Compensation cap is not scaling with technology

ScalTech Opamp

3-stage-opamp

Feedforward path for compesation *

I Cm

Andrea Baschirotto | 31

* I. Di Sancarlo, ESSCIRC 2008

ScalTech Opamp Design 3-stage SMFFC opamp prototype

Experimental results

Parameter	Performance
Technology CMOS	65nm
Differential Gain/UGB	84dB / 200MHz
Common Mode Gain/UGB	85dB / 136MHz
PSRR@1MHz	60dB
CMRR@1MHz	38dB
HD3@5MHz	-82dBc
Output Noise@1MHz	27nV/√Hz
Power Consumption	10mW

Bandgap Reference Voltage Sub-1V operation is possible *

 V_{DD}

^{*} K.N. Leung and P.K.T. Mok, "A Sub-1-V 15-ppm/oC CMOS Bandgap Voltage Reference without Requiring Low Threshold Voltage Device," IEEE Journal of Solid-State Circuits, vol.37, pp.526-530, Apr. 2002

Analog Design in ScalTech

Outline

- $\circ\,$ CMOS technology scaling trends
 - Power reduction
 - {V_{DD}-V_{TH}} reduction
 - Gain reduction
 - V_{TH} variation
- ScalTech Analog design
 - ScalTech at transistor level
 - Transistor in subthreshold
 - ScalTech at circuit level
 - Analog switch
 - Opamp design
 - Basic bandgap design
 - ScalTech at system level
 - Analog filter
 - ADC

ScalTech Analog Filter Low voltage

- Active-RC filters guarantee the required linearity
- Analog filter critical points
 - Bias point
 - Low & non-linear output impedance
 - Frequency response accuracy
 - In-band & out-of-band linearity

$$HD3 \approx \frac{a_3}{2 \cdot a_1^4 \cdot \beta} \cdot V_o^2 \cdot \left(1 + \frac{V_o}{3 \cdot V_i}\right)$$

- Possible solution
 - Automatic filter design

Analog filters Very-Low-Voltage design example

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 9, SEPTEMBER 2009

A 0.55 V 60 dB-DR Fourth-Order Analog Baseband Filter

Marcello De Matteis, Stefano D'Amico, Member, IEEE, and Andrea Baschirotto, Senior Member, IEEE

- Input Common-mode Feedback Circuit

 Optimum bias
 - Filter_{Input} = Filter_{Output} = V_{DD}/2
 - Rail-to-rail output swing
 - **Opamp**_{Input} close to GND ≠ Filter_{Input}
- Active-Gm-RC structure
 - $\,\circ\,$ Lower power consumption, current, V_{GS}
- Equation-based Automatic design
 - Transistor quadratic law
 - Power consumption minimization

ScalTech Analog Filter Simulator-based Automatic filter design

- A list of input data –
- Performance achievement
 - \circ Transfer function
 - \circ Noise
 - In-band & Out-of-band linearity
 - $\circ \rightarrow$ Power consumption minimization
- Use of iterative SPICE simulation
 - Suited automatic-design algorithms achieve large signal performance
 - Even with ScalTech non-ideal effect

Paris, France

Wepp-09

ScalTech Analog Filter

Simulator-based Automatic filter design

65nm Silicon prototype

AC_Coupling

AC_Coupling Parameter Nominal Worst Case 30.6 G[dB] 7.8 f@-3dB[MHz] 12 $V_{DD}[V]$ CMOS Technology 65nm V_{TH} 0.45V 11 1 Power Consumption[mW] 13 Output Integrated Noise[mVms] 1.73(100kHz+10MHz) IRN Spectral Density@7MHz [nV/\Hz] 18 Output 1dBcP - [Vzero-peak] 0.9 THD[dBc] - vout=850mVzero-peak@3MHz 40 52 SNR@THD=40dBc - [dB] IIP3 [dBm] vin=vin1+vin2[dBc] -10 vinl@4MHz and vin2@6MHz

29.5

7.25

1.1/1.3

0.5

16

1.9

20

079

38

50.8

-12

ScalTech Analog-to-Digital Converters Paris, France

Low voltage

- ADC critical points
 - Bias point
 - Low & non-linear output impedance
 - Mismatch
- Popular ADC topology: Pipeline ADC
 - [©] The internal speed-of-operation is the same of the external data-rate
- Alternative solutions
 - O O Adopt ADC topologies with low performance sensitivity to scaling
 - They operates at higher internal speed
 - Fx.: SAR & ΣΛ
 - • Use the additional digital signal processing (low power & low area in ScalTech)
 - To improve analog performance
 - Different digital correction algorithms for Different analog critical performance errors
 - Effectiveness
 - Speed requirement
 - Complexity
 - Time to convergency

Cwepp-09

September 21-25, 2009

ScalTech Pipeline ADC

Performance requirement summary

- ADC requirement: N bit & Stage resolution: B bit
 - → Stage requirements

 $\frac{\Delta C}{C}$

 $\left| < \frac{1}{2^N} \right|$

 $V_{N,TH} \ll LSB = \frac{V_{FS}}{2^N}$

In ScalTech DC-Gain spec is difficult to achieve

Also linearity has to be considered

DAC Accuracy

Noise

ScalTech Pipeline ADC Digital correction algorithms

- Harmonic Distortion correction in residue amplifiers
 - Panigada, Galton, "A 130mW 100MS/s Pipelined ADC with <u>69dB</u> <u>SNDR</u> Enabled by Digital Harmonic Distortion Correction", ISSCC09 & IEEE TCAS Sept.09
 - B. Murmann, B. Boser, "A 12b 75MS/s Pipelined ADC <u>using O-pen-Loop Residue Amplification</u>," IEEE JSSC, Dec. 2003
- Residue Amplifier Gain Calibration
 - E. Siragusa, I. Galton, "A Digitally Enhanced 1.8V 15b 40MS/s CMOS Pipelined ADC," IEEE JSSC, Dec. 2004
 - R.G. Massolini, G. Cesura, R. Castello, "A fully digital <u>fast convergence</u> algorithm for nonlinearity correction in multistage ADC", IEEE TCASII, May 2006.
 - G. Ahn et al., "A 12b 10Ms/s pipelined ADC using reference scaling", Proc.IEEE Int. Symp. on VLSI Circuits, pp. 220-221, Sep. 2006
- DAC Calibration
 - E. Siragusa, I. Galton, "A Digitally Enhanced 1.8V <u>15b</u> 40MS/s CMOS Pipelined ADC," IEEE JSSC, Dec. 2004.
 - I. Galton, "Digital cancellation of D/A converter noise in pipelined A/D converters", TCASII Mar. 2000
 - Sourja Ray, Bang-Sup Song, "A <u>13-b</u> Linear, 40-MS/s Pipelined ADC With Self-Configured Capacitor Matching", IEEE JSSC Mar 2007
 - S. Sutarja, P.R. Gray, "A pipelined 13-bit 250-ks/s 5-V analog-to-digital converter", IEEE Journal of Solid-State Circuits, Dec. 1988

ScalTech SAR ADC Key features

- The N-bit digitalization process needs N clock cycles
 - \circ For a given output data-rate (F_s)
 - the internal circuit operates at higher frequency $\approx \mathbf{N} \cdot \mathbf{F}_{s}$
- No input signal processing
 - Only a (passive) S&H
- Active blocks:
 - A critical DAC
 - A non-critical comparator
- Very low power consumption
 - No opamp
 - $\circ\,$ Power is consumed by the comparator, the $\underline{\text{DAC}},$ the logic

ieee journal of solid-state circuits, vol. sc-19, no. 6, december 1984

Special Papers.

A Self-Calibrating 15 Bit CMOS A/D Converter

ScalTech SAR ADC

Digital correction

ISSCC 2008 / SESSION 12 / HIGH-EFFICIENCY DATA

12.1 An 820µW 9b 40MS/s Noise-Tolerant Dynamic-SAR ADC in 90nm Digital CMOS

Vito Giannini¹, Pierluigi Nuzzo¹, Vincenzo Chironi², Andrea Baschirotto², Geert Van der Plas¹, Jan Craninckx¹

¹IMEC, Leuven, Belgium, ²University of Salento, Lecce, Italy

- Charge-sharing implementation

 Minimum power consumption
- Conversion step redundancy

 Performance robustness
- Adjustable comparator input noise

 Minimum power consumption
- Asynchronous SAR

 Highest sampling frequency

- 1	TI S&H	Pre-Charged Carray	Flexible
Vp			Comparator
	L, Ť, J	±Q1 ±Q2 ····· ±Q2	
Vn	L, Ť, L		
I			offset
CLK	+/- C1	+/- C	
7 7		· · · · · · · · · · · · · · · · · · ·	
SDIN	Asynchro	nous SAR Controller	\leftarrow
	66 68	6 6 8 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Sp T
	Corr	ection Logic	
			+/- Charge

Ref.	Tech	ERBW	ENOB	VDD	Power	FoM
Shrivastava - ISCAS06	0.13µm	2.1MHz	11.41	1.2	6.6mW	577fJ/con
Hesener - ISSCC07	0.13µm	20MHz	13.49	1.5	66mW	143fJ/con
Craninckx - ISSCC07	90nm	10MHz	7.8	1	290µW	65fJ/conv
This work	90nm	32MHz	8.56	1	820µW	54fJ/com

^{*} B. Murmann, "ADC Performance Survey 1997-2009," [Online]: http://www.stanford.edu/~murmann/adcsurvey.html

^{*} B. Murmann, "ADC Performance Survey 1997-2009," [Online]: http://www.stanford.edu/~murmann/adcsurvey.html

A. Baschirotto¹, G. Cocciolo², S. D'Amico², M. De Matteis², P. Delizia²

Thank you !!!

ScalTech -> LV

Low-Voltage vs. Low-Power - V_{DD} reduction

V_{DD} scaling affects analog circuit performance

$FoM_P = \frac{4 \cdot k \cdot T \cdot DR^2 \cdot BW}{P}$

 $FoM_{I} = \frac{4 \cdot k \cdot T \cdot DR^{2} \cdot BW}{I}$

FoM_P ⇔ the power dissipation

 $FoM_{l} \Leftrightarrow the current consumption (F_{l}=F_{P}\cdot V_{DD})$

Paris, France

- \rightarrow F_I does not consider P reduction due to the V_{DD} scaling
- \rightarrow F_1 considers only the P increase for maintaining the DR

Reference	Year	<i>V_{DD}</i> [<i>V</i>]	DR [dB]	BW [kHz]	P [mW]	$F_{P}[\times 10^{6}]$	<i>F</i> ₁ [× 10 ⁶]
Dessouky	2001	1	88	25	1.00	261	261
Peluso	1998	0.9	77	16	0.04	332	299
Libin	2004	1	88	20	0.14	1493	1493
Rabii	1997	1.8	99	25	2.50	1316	2369
Williams	1994	5	104	50	47.00	443	2214
Nys	1997	5	112	0.4	2.18	483	2415
Wang	2003	5	113	20	115.00	575	2875
YuQing	2003	5	114	20	34.00	2448	12240

Wepp-09

iics for Particle Physics

CMOS Technology scaling Drain Induced Barrier Lowering (DIBL)

- $\circ \rightarrow I_D$ Increase, particularly in weak and moderate inversion
- Depletion region associated with drain junction expands
 - \circ V_{DS}↑⇒ additional V_{TH} shift

Wepp-09

CMOS Technology scaling Geometrical mismatch

- Basic Current Mirror
 - Current-ratio variability of 10:1 current mirror

CMOS Technology scaling Overall trends

- $g_m/I_d \approx \text{Constant}$
- f_T /
- $g_m/g_{ds} \searrow$
- V_{DD} 🔨
- Signal-to-distortion ratio (SDR) ∖

∜

Signal-to-noise ratio (SNR) ∖

^{*} K.W. Chew, K.S. Yeo and S.-F. Chu, "Impact of technology scaling on the 1/f noise of thin and thick gate oxide deep submicron NMOS transistors", IEE Proc.-Circuits Devices Syst., October 2004

Passive Switched-Opamp CMFB circuiteris, France

- No opamp
- o Basic solution

o Improved solution

Wepp-09

ics for Particle Physics

September

ScalTech Analog Filter Non-constant opamp gain Distortion

• The opamp V_i-to-V_o:

$$V_o = a_1 \cdot V_i + a_2 \cdot V_i^2 + a_3 \cdot V_i^3 + \dots$$

Paris

Non-constant opamp gain results in signal distortion

$$HD2 \approx \frac{a_2}{2 \cdot a_1^3 \cdot \beta} \cdot V_o \cdot \sqrt{1 + \left(\frac{V_o}{2 \cdot V_i}\right)^2} \qquad HD3 \approx \frac{a_3}{2 \cdot a_1^4 \cdot \beta} \cdot V_o^2 \cdot \left(1 + \frac{V_o}{3 \cdot V_i}\right)^2$$

- The distortion can then be reduced
 - \circ using a very large opamp gain (i.e. increasing a_1)
 - \circ making constant low-gain (i.e. reducing a_2 and a_3)
 - \circ even order harmonics are greatly reduced by using fully-differential structures

Wepp-09

ics for Particle Physics

eptember

A 1.2v 11b 100Msps 15mW ADC realized using 2.5b pipelined stage followed by time interleaved SAR in 65nm digital CMOS process

Pratap Narayan Singh, Ashish Kumar, Chandrajit Debnath, Rakesh Malik STMicroelectronics India

- The 9b SAR ADC reduces power consumption
- An MSB pipelined stage holds the signal for the SAR
 - No sampling skew problem associated with time interleaved SAR ADCs.

Analog-to-Digital Converters

45nm design example

ISSCC 2009 / SESSION 4 / HIGH-SPEED DATA CONVE

4.2 A 1.1V 50mW 2.5GS/s 7b Time-Interleaved C-2C SAR ADC in 45nm LP Digital CMOS

Erkan Alpman^{1,2}, Hasnain Lakdawala¹, L. Richard Carley², K. Soumyanath¹

¹Intel, Hillsboro, OR ²Carnegie Mellon University, Pittsburgh, PA

- A small-area C-2C SAR architecture
 - $\circ \rightarrow$ low input capacitance
- High-speed boosted switches
 - \circ \rightarrow overcome high device threshold
- A background comparator offset calibration and radix calibration
- A redundant-ADC-based gain, offset and timing calibration
 - \circ **→** TI errors reduction

Process	45nm LP CMOS
Active Area	1mm ²
Resolution	7 bits
Sample Rate	2.5GS/s
Supply Voltage	1.1V
V _{ref_max}	700mV
V _{ref_min}	200mV
Input Range	$1.0 V_{pp-diff}$
Power Consumption	50mW
DNL/INL	$\pm 0.5LSB$ / $\pm 0.8LSB$
Single ADC SNDR/SFDR	>38dB/ <-49dBc
Single ADC ENOB	6.1b within Nyquist
Single ADC FOM	180fJ/conv
TI SAR ADC SNDR/SFDR	>34dB/ <-43dBc
TI SAR ADC ENOB	>5.4b within Nyquist
TI SAR ADC FOM	480fJ/conv

Analog-to-Digital Converters 65nm design example

A 2.2mW, Continuous-Time Sigma-Delta ADC for Voice Coding with 95dB Dynamic Range in a 65nm CMOS Process

Lukas Dörrer, Franz Kuttner, Andreas Santner, Claus Kropf, Thomas Hartig, Patrick Torta, Patrizia Greco Infineon Technologies Austria AG Villach, Austria Iukas.doerrer@infineon.com

- A $\Sigma\Delta$ feedback topology
- A chopped first operational amplifier

 Gain = 50dB
- A tracking quantizier
- A RZ-DAC in the first stage
 - \circ \rightarrow No preamplifier or anti-aliasing filter

27.8 A Continuous Time $\Delta\Sigma$ ADC for Voice Coding with 92dB DR in 45nm CMOS

Lukas Dörrer, Franz Kuttner, Andreas Santner, Claus Kropf, Thomas Puaschitz, Thomas Hartig, Manfred Punzenberger

Infineon Technologies, Villach, Austria

- Current-steering DAC provides spectral information (harmonics) about dynamic MOS transistor mismatch.
- The SC quantizer reveals dynamic mismatch of capacitances.
- The optional chopped filter input stage separates flicker noise of weakly and strongly inverted transistors.
- Excess loop delay and jitter can be seen in the power spectral density (PSD) plot

