

Recent Advances in Architectures and Tools for Complex FPGA-based Systems

Michael Schulte University of Wisconsin

TWEPP 2009

Slides provided by various sources

M. Schulte, TWEPP, September, 2009 1

- Overview of FPGA Architectures
- Recent FPGA Trends
- Tools for FPGA-based Systems
- FPGAs in Particle Physics Experiments
- Conclusions

FPGA Architectures

FPGA Architecture

Modern FPGAs contain a wide variety of resources

These resources and their interconnections can be <u>reconfigured</u> for target applications

Configurable Logic Blocks

Configurable Logic Blocks

- Have reconfigurable hardware functionality
- Have reconfigurable interconnections

Virtex-6 Configurable Logic Block

- Each CLB contains two slices
- Each slice contains four 6-input Lookup Tables (LUT6)
- Slices also contain fast carry-logic, multiplexers, and registers

Each LUT6 can implement

- Wide range of Boolean functions
- Memories of 64 bits
- Shift registers

Up to 118,560 slices per FPGA

- Up to 38 Mb of RAM in 36-Kb blocks
 - Each 36-Kb block can be configured as two 18-Kb blocks
- Both the depth and the width of memory can be configured
- Dual-port memory
 - Each port has synchronous read and write capability
 - Different clocks for each port
- Several options for changing block RAM configuration

- DSP slices provide fast arithmetic operations
- Virtex-6 DSP48E1 architecture
 - 30-bit add/subtract unit
 - 25x18-bit multiplier
 - 48-bit arithmetic and logic unit (ALU)
 - Add/substract/logic functions
 - SIMD operation
 - Final comparator
 - Chaining and feedback increase functionality
 - Up to 2K DSP Slices per FPGA

- Multi-Gigabit transceivers provide high-speed I/O
- GTX provides up to 6.5 Gbps per transceiver
- GTH provides up to 11 Gbps per transceiver
- XC6VHX565T has 24 GTH transceivers and 48 GTX transceivers
- Up to 576 Gbps of Serial I/O per FPGA

FPGA Trends - Logic Cells

595x Increase in Logic Cells

FPGA Trends - Block RAMs

270x Increase in Block RAM Bits

FPGA Trends - Clock Rate

24x Increase in Clock Rate

WISCO

JSIN

FPGA Trends - Power

5x Increase in Power

FPGA Trends - Energy/LC

WISCONSIN MADISON

Virtex-6 FPGA Characteristics

	Logia	Configurable Logic Blocks (CLBs)			Block RAM Blocks				Interface	Ethornot	Maximum Transceivers		Total	Мах
Device	Cells	Slices ⁽¹⁾	Max Distributed RAM (Kb)	Slices ⁽²⁾	18 Kb ⁽³⁾	36 Kb	Max (Kb)	MMCMs ⁽⁴⁾	Blocks for PCI Express	MACs ⁽⁵⁾	GTX	GTH	I/O Banks ⁽⁶⁾	User I/C ⁽⁷⁾
XC6VLX75T	74,496	11,640	1,045	288	312	156	5,616	6	1	4	12	0	9	360
XC6VLX130T	128,000	20,000	1,740	480	528	264	9,504	10	2	4	20	0	15	600
XC6VLX195T	199,630	31,200	3,040	640	688	344	12,384	10	2	4	20	0	15	600
XC6VLX240T	241,152	37,680	3,650	768	832	416	14,976	12	2	4	24	0	18	720
XC6VLX365T	364,032	56,880	4,130	576	832	416	14,976	12	2	4	24	0	18	720
XC6VLX550T	549,838	85,920	6,200	864	1,264	632	22,752	18	2	4	36	0	30	1200
XC6VLX760	758,784	118,560	8,280	864	1,440	720	25,920	18	0	0	0	0	30	1200
XC6VSX315T	314,830	49,200	5,090	1,344	1,408	704	25,344	12	2	4	24	0	18	720
XC6VSX475T	476,160	74,400	7,640	2,016	2,128	1,064	38,304	18	2	4	36	0	21	840
XC6VHX250T	251,904	39,360	3,040	576	1,008	504	1 8,144	12	4	4	48	0	8	320
XC6VHX255T	253,440	39,600	3,050	576	1,032	516	18,576	12	2	4	24	24	12	480
XC6VHX380T	382,464	50,700	4,570	304	1,536	768	27,648	18	4	4	40	24	18	720
XC6VHX565T	566,784	58,560	6,370	864	1,824	912	32,832	18	4	4	48	24	18	720

Conventional FPGA Design and Verification

- FPGA-based systems are becoming increasingly complex
 - New tools can help manage this growing complexity
- These tools come from a variety of sources
 - FPGA companies (Xilinx and Altera)
 - EDA companies (Synopsys, Cadence, Mentor Graphics)
 - Open source projects
 - University research projects
- Several tools available to specify, design, test, and implement complex FPGA-based system
- This talk focuses on
 - Tools for C-to-HDL conversion and synthesis
 - Xilinx DSP tools

- Several tools have been develop that perform C-to-HDL conversion
 - Impulse-C (www.impulseaccelerated.com)
 - C-to-Verilog (www.c-to-verilog.com)
 - PICO Extreme FPGA (www.synfora.com)
 - C-to-Hardware Acceleration Compiler (www.altera.com)
 - NISC Technology (www.ics.uci.edu/~nisc)
 - SPARK Toolset (mesl.ucsd.edu/spark)

C-to-HDL Uses

- Intended for hardware/ software co-design
- Designs specified using C plus extensions
- Impulse-C
 - Optimizes C code for parallelism
 - Generates hardware/ software interfaces
 - Generates VHDL or Verilog
 - Provides interactive tools to improve results

PICO Express FPGA

- Takes a C algorithm and a set of design requirements and automatically creates a series of implementation models
- Also creates testbenches, synthesis and verification scripts, and software drivers

- Provides free online tool for C-to-Verilog conversion
- Converts standard C code with some restrictions
 - No recursive functions, structures, pointers to functions, or library function calls
- Separately specify implementation details
 - Word sizes, amount of loop unrolling, amount of hardware, FPGA family
- Automatically generates Verilog code and a Verilog testbench (with random inputs)
 - Performance of generated code can be quite good
 - Is difficult to read and debug
- Several design examples available online

NISC Technology

- Provides an automated method for generating custom processors for a target application
 - Generates the processor datapath, control bits, and data memory
 - These are then mapped to an ASIC or FPGA using conventional tools

- Simplify the design process
 - Especially for people not familiar with HDLs
 - Often generate useful resource C support code, test benches, hardware interfaces, scripts, etc.
- Facilitate design-space exploration
- Can generate surprisingly good designs
 - As good or better than hand-optimized designs in many cases
- However,
 - C code has restrictions and/or needs extensions
 - Need to be careful with coding style
 - Often designed for hardware acceleration
 - Generated code is usually difficult to read and debug
- Tools should continue to improve

Xilinx DSP Tools

- Xilinx tools for digital signal processing include
 - System Generator for DSP
 - AccelDSP
- Integrated with other Xilinx Tools, MATLAB, and Simulink
- Facilitate exploration and implementation of DSP systems
- Useful in other data-intensive applications

- Extensive libraries for math functions, signal processing, scientific computing, etc.
- Large variety of functions to plot and visualize data, systems, and designs

Simulink

- Simulink provides a model-based design environment
 - Fully integrated with MATLAB
 - Graphical block editor
 - Event-driven simulator
 - Models parallelism
 - Extensive library of parameterizable functions

25

- Provides a system-level design environment for Xilinx FPGAs
 - Enables a design flow from Simulink software to FPGA implementation. It leverages
 - MATLAB, Simulink
 - HDL synthesis, IP Core libraries
 - FPGA implementation tools
- Features include
 - Synthesizable VHDL/Verilog with hierarchy preservation
 - Automatic invocation of the CORE Generator[™] software
 - Project generation to simplify the design flow
 - HDL testbench and test vector generation
 - Constraint file and simulation file generation

Basic SysGen Design Flow

Enables designs specified using Simulink to be quickly implemented on FPGAs M. Schulte, TV

WISCONSIN MADISON

System Generator DSP Blockset and the Simulink Library

- Provide a variety of arithmetic, logic operators, and DSP functions
 - Bit and cycle-accurate to FPGA implementation
 - Arbitrary precision fixed-point arithmetic including quantization and overflow
- Allow instantiation of controllers, memories, and IP blocks
- Facilitate input waveforms and output value sampling

Design Integration with SysGen

• System Generator is integrated with the rest of the Xilinx Tool Flow M. Schulte, TWEPP, 2009 29

AccelDSP Design Flow

Typical Design Flow

Floating-Pt.	Fixed-Point	Architecture	Create / Integrate	Create RTL	Refine	Verify	RTL
Algorithm	Conversion	Definition	IP Blocks	Design	Architecture	RTL	Synthesis

Steps performed by AccelDSP

AccelDSP Design Flow

Replaces manual steps

- Floating to fixed-point conversion
- RTL creation
- RTL and gate verification back to the original algorithm
- IP creation and integration

AccelDSP Design

AcceIDSP -MATLAB to RTL DSP Synthesis for Creation of DSP Cores

> AccelWare -Parameterized DSP IP Generator Toolkits

AccelDSP Synthesis

MATLAB to RTL or Simulink

Design Inferred from MATLAB code

- Quantization changes
- Loop rolling / unrolling
- Pipelining
- Device-specific memory mapping

<u>AccelWare IP Generators for DSP</u> <u>Cores</u>

- Signal processing
- Linear algebra
 - Communications
 - M. Schulte, TWEPP, 2009 31

AccelDSP Design & Verification

- AccelDSP Synthesis automatically generates a fixed-point model from the floating-point source
 - Process is user interactive and controllable
- High level MATLAB functions and operators are automatically replaced by hardware accurate models
- Accurate estimates are made of resources and performance

• IP-Explorer

- Fixed-point analysis features are provided to address reduced-precision arithmetic errors
 - Plots and histograms
 - Overflow and underflow reporting

Summary of Xilinx DSP Tools

- Provide a high-level of abstraction for design
 - Developed using MATLAB and/or Simulink
- Facilitate design-space exploration
 - Can quickly examine different architectures and get resource and performance estimates
- Generate good designs in terms of both resource usage and performance
 - Especially for DSP-related tasks, but also for other dataintensive systems
- Well integrated with other Xilinx tools
- However,
 - MATLAB code has restriction and Simulink has limited capabilities
 - Need to be careful with coding style
 - Generated code can difficult to read
 - Portions of the generated code are Xilinx specific

FPGA-based Systems for Particle Physics

- Recent FPGA architectures and tools have tremendous potential for particle physics systems
 - Over 10,000 FPGAs currently used in CMS electronics
- Can provide improved
 - System integration
 - Design space exploration
 - Design verification
 - Overall design quality
- Examples
 - Configurable feedback damper systems for the Spallation Neutron Source (SNS) at ORNL
 - Initial designs for upgrades to the Regional Calorimeter Trigger (RCT) for the CMS detector at CERN

- A mixed-signal feedback damper system to control Electron-Proton (E-P) instabilities
 - Helps control ring oscillations due to E-P instabilities
 - Compensates for various source of error in the system
 - Includes a mixed of analog and FPGA-based hardware
 - Has very high-speed signal processing requirements

- Preliminary FPGA design
 - Includes programmable delays, comb filters, parallel FIR filters, and gain control
 - Allows the system to be monitored and adapted at runtime
 - Implemented using VHDL and conventional Xilinx tools
- Later design using System Generator, AccelDSP, and ChipScope Pro had
 - Reduced resource utilization (roughly 25% reduction)
 - Improved performance (increase clock frequency by 20%)
 - Greater opportunities for design space exploration
 - Degree of parallelism, number of taps in FIR filter
 - Changes to arithmetic precision and rounding
 - Improved debug capabilities

- Investigating FPGA architectures, tools, and techniques to help upgrade the RCT of the CMS detector at CERN
- Original RCT implemented using ASICs
- Upgraded RCT to be implemented using FPGAs with new algorithms for increased beam luminosity
- Desired features
 - Greatly reduced component counts
 - Ability to quickly explore design alternatives
 - Rigorous testing and verification infrastructure

- Investigating several tools and techniques including
 - The DICE environment for testing and verification
 - Dataflow languages (DIF and OpenDF) for design specification, validation, and implementation
 - Several Xilinx tools for design specification, implementation, debugging, and verification
 - Open source tools for version control (SVN) and firmware documentation (doxygen and doxverilog)
 - Modular and parameterized designs to facilitate design space exploration and algorithm changes
- Considerable work is still needed, but initial results are promising

Conclusions

- Recent FPGAs provide tremendous processing and communication resources
 - Future FPGAs will provide even more
- Recent tools help manage the design, test, and integration of complex FPGA-based systems
 - Additional tools are needed to cope with increasing design and verification complexity
- Recent FPGAs and tools can provide substantial benefits to experiments for high-energy physics
 - Further investigation and collaboration is needed to realize their full potential

Backup Slides

DSP48E1

Floating-Point to Fixed-Point Conversion and Verification

AccelProbe

- AccelDSP Synthesis automatically generates a fixed-point model from the floating-point source
 - Process is user interactive and controllable
- High level MATLAB functions and operators are automatically replaced by hardware accurate models
- Accurate estimates are made of resources and performance
 - IP-Explorer
- Fixed-point analysis features are provided to address reduced-precision arithmetic errors
 - Plots and histograms
 - Overflow and underflow reporting

Xilinx FPGA Tools

- ISE Foundation
 - Enter, simulate, synthesize and implement designs
- PlanAhead Design and Analysis Tool
 - Perform I/O pin planning, design analysis, floorplanning, and design-space exploration
- ChipScope Pro
 - Debug and validation post-implementation designs
- Embedded Development Kit (EDK)
 - Generate complete embedded processor systems
- System Generator for DSP
 - Design and analyze DSP systems
- See http://www.xilinx.com/tools/system.htm

FPGA Design Flow

This tutorial focuses on implementation

FPGA

FPGA Trends

