3D electronics for hybrid pixel detectors

ATLAS read-out chip upgrade

- S. Godiot ^a, M. Barbero ^b, B. Chantepie ^a, J.C. Clémens ^a, R. Fei ^a, J. Fleury ^c, D. Fougeron ^a, M. Garcia-Sciveres ^c, T. Hemperek ^b, M. Karagounis ^b, H. Krueger ^b, A. Mekkaoui ^c, P. Pangaud ^a, A. Rozanov ^a, N. Wermes ^b
 - ^a Centre de Physique des Particules de Marseille, France
 ^b University of Bonn, Germany
 - ^c Lawrence Berkeley National Laboratory, California, USA

3D for hybrid pixel detectors

Atlas read-out chip upgrade

- 3D FE-TC4 project :
 - Motivations
 - Context
 - Steps: 2D and 3D circuits
- 2D test results
- 3D design
 - Technology description
 - Tiers description
 - Final assembly
- Conclusion & futures plans

3D motivations for ATLAS upgrades

- Improve spatial resolution
- Deal with an increasing counting rate
- Decrease pixel size

3D pixel road map (A.Rozanov, ATLAS-France Paris, June 22, 2009):

- **3D benefits:** □ Pixel size reduction
 - Pixel functionalities splitting
 - Technologies mixing

FETC4 – Atlas 3D read-out chip project Bonn, CPPM, and LBL collaboration

- Goal: to reach a pixel dimension of 50*125 µm
- Solution :
 - split pixel functionalities into 2 parts
 - stack vertically these 2 "tiers"
- Context / Opportunity :
 - Interest (and funding!) of IN2P3 on 3D electronics
 - First MPW run for High Energy Physics organized by FNAL with a consortium of 15 institutes (France, Germany, Italy, Poland and United-States)
 - This process combines :
 - Chartered 130nm technology
 - Tezzaron 3D technology

3D project steps

FEI4_P1 design 14*61 "analog" pixel matrix (50 * 166µm) (8 metal levels, 130nm,IBM)

Translation into 2D Chartered technology (8 metal levels, 130nm): FEC4 P1

- Pixel structure : identical to FEI4_P1
- Objective : test Chartered technology (functionalities, performances, radiation...)

First 3D design: **FETC4_P1**Chartered (5 metal levels, 130nm) + Tezzaron

- One tier for the analogue pixel part,
- One tier for the digital

Submission: March 08 Test: Summer 08

Submission: February 09 Test: April 09

Submission: Summer 2009

FEC4_P1 test results

- Due to schedule no optimization of transistors has been done
- Surprisingly, main results are equivalent to IBM ones
 - □ Threshold min around 1100 e-
 - Un-tuned threshold dispersion 200 e-
 - □ Noise lower than 80 e-

FEC4_P1 test results: Irradiations

- Irradiation performed at CERN/PS facility (24 GeV protons) up to 400 MRad
 - Problem discovered after 160 MRad on latches (output tends to be blocked in "1" state)
 - Difficult to work with the circuit by after
 - Problem reproduced in simulation "corners"
 - ... but

Analog is still working even with increased of noise: 250 e- (threshold dispersion is meaningless)

Tezzaron-Chartered 3D technology:

Vertical integration

Characteristics:

- 2 wafers (tier 1 and tier 2) are stacked face to face with Cu-Cu thermo-compression
- Via First technology: Super-Contacts (Through Silicon contacts) are formed before the BEOL of Chartered technology.
- Wafer is thinned to access Super-Contacts
- Back-side metal for bonding (after thinning)

Wafer to wafer bonding Bond interface layout

TWEPP 2009, Paris, September 23rd

Chartered-Tezzaron MPW run

2 identical wafers are stacked => tier 1 and tier 2 are in the same reticle

TX1	ТУ1	ТУ2	TX2	
A1	B1	В2	A2	
C1	D1	D2	C2	
E1	F1	F2	F2	
G1	H1	Н2	G2	
J1	K1	K2	Ј2	

4 sub-reticles for SLHC chips projects : FE_TC4_P + OmegaPix

- □ C1, D1 = analog tier "FE-TC4-AE" + analog OmegaPix
- □ C2 = first version for digital tier : FE-TC4-DS
- D2 = second version for digital tier : FE-TC4-DC read-out structure "FEI4-like"+ digital OmegaPix

Chartered-Tezzaron MPW run

- Tier 1 (analog) is thinned to access Super-Contacts.
- I/O of the tiers are independent, each tier can be tested separately
- Analog tier has been kept kept as close as possible identical to FE_C4, main change is the reduction to 5 metal layers

FE-TC4-AE analogue tier

Based on FEI4_P1 pixel

Input signal from sensor, via Super-Contacts

2 possible ways for discriminator output read-out:

- With the simple read-out part existing yet into the pixel
- With the tier 2 (via the Bond Interface)

FE-TC4-DS digital tier dedicated for test

Parasitic coupling study between tier

- Analogue tier and digital tier are face to face (sensitive part facing digital part).
- FE-TC4-DS: dedicated for parasitic coupling studies between the 2 tiers.
- 3 functions :
 - Read the discriminator output
 - Generate noise (digital commutations) in front of 11 specific areas of the analogue pixel (preamplifier, feed-back, amplifier2, DAC...)
 - Test different shielding configurations.

Analogue pixel layout : 11 specific areas

FE-TC4-DS digital tier dedicated for test

Shielding strategy:

- 5 columns without any shielding (reference),
- 4 columns with shielding in metal 5,
- 2 columns with shielding in metal 3,
- 2 columns with both shielding.

FE-TC4-DC digital tier

Read-out chip similar to what is foreseen for FE-I4:

4-pixel region :

61 pixels/ column => implies 31
 '4-pixel' regions plus 2 dummy pixels per double-column.

Simplified periphery and read-out control logic :

 Some signals are provided from the outside (data read-out signals, signals for pixel hits communication to the periphery...

Complex read-out chip

Final assembly with sensor

Sensor layout : Anna Macchiolo, Max-Planck-

Institut für Physik, Munich

Wire-bond
Tier 1 IOs
SENSOR
Tier 2 IOs

SC

Wire-bond
Tier 2 IOS

Wire-bond
Tier 2 IOS

SC

Wire-bond
Tier 2 IOS

Wire

Bonding foreseen to be done at IZM (Berlin) as for ATLAS modules

Due to geometric constraints, sensor matrix is reduced:

- Sensor matrix : 7 columns of 48 pixels
- □ Tier 1 and Tier 2 matrix: 14 columns of 61 pixels

Conclusions and future plans

- Benefits of 3D technology for hybrid pixel detectors appear evident:
 - Pixel size reduction
 - Technologies mixing
 - More functionalities can be implemented in front of the analogue pixel
- By the end of the year :
 - Tests will be performed on FETC4_P1
 - Design and production of FEC4_P2 (transistor optimization and few minor corrections), submission beginning of November
 - Start working to design a full scale FETC4

Conclusions and future plans (con't)

FE_C4 chip

- Chip size the 18.8 x 20.1 mm (336 rows x 160 columns, EOC 1.95 mm)
- Pixel pitch 50*125 μm, same technology as FE_TC4_P1
- Bump bond pads compatible with 250 µm sensor pitch
- Keep the possibility of different flavors in some columns
- Pros: FE_I4 blocks reuse, compatibility with FE_I4 chip for sensors, bump bonding, module/stave integration, testing tools, software, mechanics
- Cons: cost -> Needs 2 sets of mask (the chip cannot fit in ½ reticle)

Run foreseen by first half of 2010
ALL GROUPS INTERESTED IN SHARING THIS RUN ARE WELCOME
(50 % of the reticle area is available)